Skip to main content
Log in

Deficient RNA editing of GluR2 and neuronal death in amyotropic lateral sclerosis

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

One plausible hypothesis for selective neuronal death in sporadic amyotropic lateral sclerosis (ALS) is excitotoxicity mediated by α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors, which are a subtype of ionotropic glutamate receptors. The Ca2+ conductance of AMPA receptors differs markedly depending on whether the GluR2 (or GluR-B) subunit is a component of the receptor. The properties of GluR2 are generated posttranscriptionally by RNA editing at the Q/R site in the putative second membrane domain (M2), during which the glutamine (Q) codon is substituted by an arginine (R) codon. AMPA receptors containing the unedited form of GluR2Q have high Ca2+ permeability in contrast to the low Ca2+ conductance of those containing the edited form of GluR2R. The role of Ca2+-permeable AMPA receptors, particularly GluR2 Q/R site RNA editing status, in neuronal death has been clearly demonstrated both in mice deficient in editing at the GluR2 Q/R site and in mice transgenic for an artificial Ca2+-permeable GluR2 subunit. We analyzed the expression level of mRNA of each AMPA receptor subunit in individual motor neurons, as well as the editing efficiency of GluR2 mRNA at the Q/R site in the single neuron level in control subjects and ALS cases. There was no significant difference as to the expression profile of AMPA receptor subunits or the proportion of GluR2 mRNA to total GluRs mRNA between normal subjects and ALS cases. By contrast, the editing efficiency varied greatly, from 0% to 100%, among the motor neurons of each individual with ALS, and was not complete in 44 of them (56%), whereas it remained 100% in normal controls. In addition, GluR2 editing efficiency was more than 99% in the cerebellar Purkinje cells of ALS, spinocerebellar degeneration and normal control groups. Thus, GluR2 underediting occurs in a disease specific and region selective manner. GluR2 modification by RNA editing is a biologically crucial event for neuronal survival, and its deficiency is a direct cause of neuronal death. Therefore, marked reduction of RNA editing in ALS motor neurons may be a direct cause of the selective motor neuron death seen in ALS. It is likely that the molecular mechanism underlying the deficiency in RNA editing is a reduction in the activity of ADAR2, a double- strand RNA specific deaminase. The restoration of this enzyme activity in ALS motor neurons may open the novel strategy for specific ALS therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ADAR :

Adenosine deaminases acting on RNA

ALS :

Amyotropic lateral sclerosis

AMPA :

α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionate

PCR :

Polymerase chain reaction

References

  1. Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A, Donaldson D, Goto J, O’Regan JP, Deng HX et al (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362:59–62

    Article  CAS  PubMed  Google Scholar 

  2. Hadano S, Hand CK, Osuga H, Yanagisawa Y, Otomo A, Devon RS, Miyamoto N, Showguchi-Miyata J, Okada Y, Singaraja R, Figlewicz DA, Kwiatkowski T, Hosler BA, Sagie T, Skaug J, Nasir J, Brown RH Jr, Scherer SW, Rouleau GA, Hayden MR, Ikeda JE (2001) A gene encoding a putative GTPase regulator is mutated in familial amyotrophic lateral sclerosis 2. Nat Genet 29:166–173

    Google Scholar 

  3. Yang Y, Hentati A, Deng HX, Dabbagh O, Sasaki T, Hirano M, Hung WY, Ouahchi K, Yan J, Azim AC, Cole N, Gascon G, Yagmour A, Ben-Hamida M, Pericak-Vance M, Hentati F, Siddique T (2001) The gene encoding alsin, a protein with three guanine-nucleotide exchange factor domains, is mutated in a form of recessive amyotrophic lateral sclerosis. Nat Genet 29:160–165

    Google Scholar 

  4. Chen YZ, Bennett CL, Huynh HM, Blair IP, Puls I, Irobi J, Dierick I, Abel A, Kennerson ML, Rabin BA, Nicholson GA, Auer-Grumbach M, Wagner K, De Jonghe P, Griffin JW, Fischbeck KH, Timmerman V, Cornblath DR, Chance PF (2004) DNA/RNA Helicase Gene Mutations in a Form of Juvenile Amyotrophic Lateral Sclerosis (ALS4). Am J Hum Genet 74:1128–1135

    Article  CAS  PubMed  Google Scholar 

  5. Julien JP (2001) Amyotrophic lateral sclerosis. unfolding the toxicity of the misfolded. Cell 104:581–591

    Article  CAS  PubMed  Google Scholar 

  6. Hafezparast M, Klocke R, Ruhrberg C, Marquardt A, Ahmad-Annuar A, Bowen S, Lalli G, Witherden AS, Hummerich H, Nicholson S, Morgan PJ, Oozageer R, Priestley JV, Averill S, King VR, Ball S, Peters J, Toda T, Yamamoto A, Hiraoka Y, Augustin M, Korthaus D, Wattler S, Wabnitz P, Dickneite C, Lampel S, Boehme F, Peraus G, Popp A, Rudelius M, Schlegel J, Fuchs H, Hrabe de Angelis M, Schiavo G, Shima DT, Russ AP, Stumm G, Martin JE, Fisher EM (2003) Mutations in dynein link motor neuron degeneration to defects in retrograde transport. Science 300:808–812

    Article  CAS  PubMed  Google Scholar 

  7. Oosthuyse B, Moons L, Storkebaum E, Beck H, Nuyens D, Brusselmans K, Van Dorpe J, Hellings P, Gorselink M, Heymans S, Theilmeier G, Dewerchin M, Laudenbach V, Vermylen P, Raat H, Acker T, Vleminckx V, Van Den Bosch L, Cashman N, Fujisawa H, Drost MR, Sciot R, Bruyninckx F, Hicklin DJ, Ince C, Gressens P, Lupu F, Plate KH, Robberecht W, Herbert JM, Collen D, Carmeliet P (2001) Deletion of the hypoxia-response element in the vascular endothelial growth factor promoter causes motor neuron degeneration. Nat Genet 28:131–138

    Google Scholar 

  8. Azzouz M, Ralph GS, Storkebaum E, Walmsley LE, Mitrophanous KA, Kingsman SM, Carmeliet P, Mazarakis ND (2004) VEGF delivery with retrogradely transported lentivector prolongs survival in a mouse ALS model. Nature 429:413–417

    Article  CAS  PubMed  Google Scholar 

  9. MacGowan DJ, Scelsa SN, Waldron M (2001) An ALS-like syndrome with new HIV infection and complete response to antiretroviral therapy. Neurology 57:1094–1097

    CAS  PubMed  Google Scholar 

  10. Moulignier A, Moulonguet A, Pialoux G, Rozenbaum W (2001) Reversible ALS-like disorder in HIV infection. Neurology 57:995–1001

    CAS  PubMed  Google Scholar 

  11. Rothstein JD, Martin LJ, Kuncl RW (1992) Decreased glutamate transporter by the brain and spinal cord in amyotrophic lateral sclerosis. N Engl J Med 326:1464–1468

    CAS  PubMed  Google Scholar 

  12. Rothstein JD, Van Kammen M, Levey AI, Martin LJ, Kuncl R, W. (1995) Selective loss of glial glutamate transporter GLT-1 in amyotrophic lateral sclerosis. Ann Neurol 38:73–84

    CAS  PubMed  Google Scholar 

  13. Nagai M, Abe K, Okamoto K, Y. Itoyama (1998) Identification of alternative splicing forms of GLT-1 mRNA in the spinal cord of amyotrophic lateral sclerosis patients. Neurosci Lett 244:165–168

    Article  CAS  PubMed  Google Scholar 

  14. Rothstein JD, Jin L, Dykes-Hoberg M, Kuncl RW (1993) Chronic inhibition of glutamate uptake produces a model of slow neurotoxicity. Proc Natl Acad Sci USA 90:6591–6595

    Google Scholar 

  15. Vandenberghe W, Ihle EC, Patneau DK, Robberecht W, Brorson JR (2000) AMPA receptor current density, not desensitization, predicts selective motoneuron vulnerability. J Neurosci 20:7158–7166

    CAS  PubMed  Google Scholar 

  16. Vandenberghe W, Robberecht W, Brorson JR (2000) AMPA receptor calcium permeability, GluR2 expression, and selective motoneuron vulnerability. J Neurosci 20:123–132

    CAS  PubMed  Google Scholar 

  17. Kwak S, Nakamura R (1995) Selective degeneration of inhibitory interneurons in the rat spinal cord induced by intrathecal infusion of acromelic acid. Brain Res 702:61–71

    Article  CAS  PubMed  Google Scholar 

  18. Kwak S, Nakamura R (1995) Acute and late neurotoxicity in the rat spinal cord in vivo induced by glutamate receptor agonists. J Neurol Sci 129 [Suppl]: 99–103

    Google Scholar 

  19. Carriedo SG, Yin HZ, Weiss JH (1996) Motor neurons are selectively vulnerable to AMPA/kainate receptor-mediated injury in vitro. J Neurosci 16:4069–4079

    CAS  PubMed  Google Scholar 

  20. Lu YM, Yin HZ, Chiang J, Weiss JH (1996) Ca2+-permeable AMPA/kainate and NMDA channels: high rate of Ca2+ influx underlies potent induction of injury. J Neurosci 16:5457–5465

    CAS  PubMed  Google Scholar 

  21. Hollmann M, Hartley M, Heinemann S (1991) Ca2+ permeability of KA-AMPA-gated glutamate receptor channels depends on subunit composition. Science 252:851–853

    CAS  PubMed  Google Scholar 

  22. Verdoorn T, Burnashev N, Monye rH, Seeburg P, Sakmann B (1991) Structural determinants of ion flow through recombinant glutamate receptor channels. Science 252:1715–1718

    CAS  PubMed  Google Scholar 

  23. Burnashev N, Monyer H, Seeburg P, Sakmann B (1992) Divalent ion permeability of AMPA receptor channels is dominated by the edited form of a single subunit. Neuron 8:189–198

    Article  CAS  PubMed  Google Scholar 

  24. Koh DS, Burnashev N, Jonas P (1995) Block of native Ca (2+)-permeable AMPA receptors in rat brain by intracellular polyamines generates double rectification. J Physiol (Lond) 486:305–312

    Google Scholar 

  25. Hume RI, Dingledine R, Heinemann SF (1991) Identification of a site in glutamate receptor subunits that controls calcium permeability. Science 253:1028–1031

    CAS  PubMed  Google Scholar 

  26. Burnashev N, Zhou Z, Neher E, Sakmann B (1995) Fractional calcium currents through recombinant GluR channels of the NMDA, AMPA and kainate receptor subtypes. J Physiol (Lond) 485:403–418

    Google Scholar 

  27. Swanson G, Kamboj S, Cull-Candy S (1997) Single-channel properties of recombinant AMPA receptors depend on RNA editing, splice variation, and subunit composition. J Neurosci 17:58–69

    Google Scholar 

  28. Iihara K, Joo DT, Henderson J, Sattler R, Taverna FA, Lourensen S, Orser BA, Roder JC, Tymianski M (2001) The influence of glutamate receptor 2 expression on excitotoxicity in Glur2 null mutant mice. J Neurosci 21:2224–2239

    Google Scholar 

  29. Jia Z, Agopyan N, Miu P, Xiong Z, Henderson J, Gerlai R, Taverna F, Velumian A, MacDonald J, Carlen P, Abramow-Newerly W, Roder J (1996) Enhanced LTP in mice deficient in the AMPA receptor GluR2. Neuron 17:945–956

    Article  CAS  PubMed  Google Scholar 

  30. Brusa R, Zimmermann F, Koh D, Feldmeyer D, Gass P, Seeburg P, Sprengel R (1995) Early-onset epilepsy and postnatal lethality associated with an editing-deficient GluR-B allele in mice. Science 270:1677–1680

    CAS  PubMed  Google Scholar 

  31. Feldmeyer D, Kask K, Brusa R, Kornau HC, Kolhekar R, Rozov A, Burnashev N, Jensen V, Hvalby O, Sprengel R, Seeburg PH (1999) Neurological dysfunctions in mice expressing different levels of the Q/R site-unedited AMPAR subunit GluR-B. Nat Neurosci 2:57–64

    Google Scholar 

  32. Tomiyama M, Rodriguez-Puertas R, Cortes R, Christnacher A, Sommer B, Pazos A, Palacios JM, Mengod G (1996) Differential regional distribution of AMPA receptor subunit messenger RNAs in the human spinal cord as visualized by in situ hybridization. Neuroscience 75:901–915

    Google Scholar 

  33. Virgo L, Samarasinghe S, de Belleroche J (1996) Analysis of AMPA receptor subunit mRNA expression in control and ALS spinal cord. NeuroReport 7:2507–2511

    CAS  Google Scholar 

  34. Williams T, Day N, Ince P, Kamboj R, Shaw P (1997) Calcium-permeable alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors: a molecular determinant of selective vulnerability in amyotrophic lateral sclerosis. Ann Neurol 42:200–207

    CAS  PubMed  Google Scholar 

  35. Bar-Peled O, O’Brien RJ, Morrison JH, Rothstein JD (1999) Cultured motor neurons possess calcium-permeable AMPA/kainate receptors. NeuroReport 10:855–859

    CAS  Google Scholar 

  36. Kawahara Y, Kwak S, Sun H, Ito K, Hashida H, Aizawa H, Jeong S-Y, Kanazawa I (2003) Human spinal motoneurons express low relative abundance of GluR2 mRNA: an implication for excitotoxicity in ALS. J Neurochem 85:680–689

    CAS  PubMed  Google Scholar 

  37. Furuyama T, Kiyama H, Sato K, Park HT, Takagi H, Tohyama J (1993) Region-specific expression of subunits of ionotropic glutamate receptors (AMPA-type, KA-type and NMDA receptors) in the rat spinal cord with special reference to nociception. Mol Brain Res 18:141–151

    Article  CAS  PubMed  Google Scholar 

  38. Tölle TR, Berthele A, Zieglgänsberger W, Seeburg PH, Wisden W (1993) The differential expression of 16 NMDA and non-NMDA receptor subunits in the rat spinal cord and in periaqueductal gray. J Neurosci 13:5009–5028

    Google Scholar 

  39. Grossman SD, Wolfe BB, Yasuda RP, Wrathall JR (1999) Alterations in AMPA receptor subunit expression after experimental spinal cord contusion injury. J Neurosci 19:5711–5720

    Google Scholar 

  40. Laslo P, Lipski J, Nicholson LF, Miles GB, Funk GD (2001) GluR2 AMPA receptor subunit expression in motoneurons at low and high risk for degeneration in amyotrophic lateral sclerosis. Exp Neurol 169:461–471

    Article  CAS  PubMed  Google Scholar 

  41. Greig A, Donevan SD, Mujtaba TJ, Parks TN, Rao MS (2000) Characterization of the AMPA-activated receptors present on motoneurons. J Neurochem 74:179–191

    Article  CAS  PubMed  Google Scholar 

  42. Dai WM, Egebjerg J, Lambert JD (2001) Characteristics of AMPA receptor-mediated responses of cultured cortical and spinal cord neurones and their correlation to the expression of glutamate receptor subunits, GluR1–4. Br J Pharmacol 132:1859–1875

    CAS  PubMed  Google Scholar 

  43. Shi S, Hayashi Y, Esteban JA, Malinow R (2001) Subunit-specific rules governing AMPA receptor trafficking to synapses in hippocampal pyramidal neurons. Cell 105:331–343

    Article  CAS  PubMed  Google Scholar 

  44. Passafaro M, Piech V, Sheng M (2001) Subunit-specific temporal and spatial patterns of AMPA receptor exocytosis in hippocampal neurons. Nat Neurosci 4:917–926

    Google Scholar 

  45. Gerber AP, Keller W (2001) RNA editing by base deamination: more enzymes, more targets, new mysteries. Trends Biochem Sci 26:376–384

    Article  CAS  PubMed  Google Scholar 

  46. Keegan LP, Gallo A, O’Connell MA (2001) The many roles of an RNA editor. Nat Rev Genet 2:869–878

    Google Scholar 

  47. Chen SH, Habib G, Yang CY, Gu ZW, Lee BR, Weng SA, Silberman SR, Cai SJ, Deslypere JP, Rosseneu M et al (1987) Apolipoprotein B-48 is the product of a messenger RNA with an organ-specific in-frame stop codon. Science 238:363–366

    CAS  PubMed  Google Scholar 

  48. Powell LM, Wallis SC, Pease RJ, Edwards YH, Knott TJ, Scott J (1987) A novel form of tissue-specific RNA processing produces apolipoprotein-B48 in intestine. Cell 50:831–840

    Article  CAS  PubMed  Google Scholar 

  49. Skuse GR, Cappione AJ, Sowden M, Metheny LJ, Smith HC (1996) The neurofibromatosis type I messenger RNA undergoes base-modification RNA editing. Nucleic Acids Res 24:478–485

    Article  CAS  PubMed  Google Scholar 

  50. Sommer B, Köhler M, Sprengel R, Seeberg P (1991) RNA editing in brain controls a determinant of ion flow in glutamate-gated channels. Cell 67:11–19

    Article  CAS  PubMed  Google Scholar 

  51. Köhler M, Burnashev N, Sakmann B, Seeburg P (1993) Determinants of Ca2+ permeability in both TM1 and TM2 of high affinity kainate receptor channels: diversity by RNA editing. Neuron 10:491–500

    Article  PubMed  Google Scholar 

  52. Lomeli H, Mosbacher J, Melcher T, Hoger T, Geiger JR, Kuner T, Monyer H, Higuchi M, Bach A, Seeburg PH (1994) Control of kinetic properties of AMPA receptor channels by nuclear RNA editing. Science 266:1709–1713

    CAS  PubMed  Google Scholar 

  53. Burns CM, Chu H, Rueter SM, Hutchinson LK, Canton H, Sanders-Bush E, Emeson RB (1997) Regulation of serotonin-2C receptor G-protein coupling by RNA editing. Nature 387:303–308

    Article  CAS  PubMed  Google Scholar 

  54. Hoopengardner B, Bhalla T, Staber C, Reenan R (2003) Nervous system targets of RNA editing identified by comparative genomics. Science 301:832–836

    Article  CAS  PubMed  Google Scholar 

  55. Rueter SM, Dawson TR, Emeson RB (1999) Regulation of alternative splicing by RNA editing. Nature 399:75–80

    Article  CAS  PubMed  Google Scholar 

  56. Burnashev N, Khodorova A, Jonas P, Helm P, Wisden W, Monyer H, Seeburg P, Sakmann B (1992) Calcium-permeable AMPA-kainate receptors in fusiform cerebellar glial cells. Science 256:1566–1570

    CAS  PubMed  Google Scholar 

  57. Jonas P, Burnashev N (1995) Molecular mechanisms controlling calcium entry through AMPA-type glutamate receptor channels. Neuron 15:987–990

    Article  CAS  PubMed  Google Scholar 

  58. Puchalski R, Louis J, Brose N, Traynelis S, Egebjerg J, Kukekov V, Wenthold R, Rogers S, Lin F, Moran Tea (1994) Selective RNA editing and subunit assembly of native glutamate receptors. Neuron 13:131–147

    Article  CAS  PubMed  Google Scholar 

  59. Swanson GT, Feldmeyer D, Kaneda M, Cull-Candy SG (1996) Effect of RNA editing and subunit co-assembly single-channel properties of recombinant kainate receptors. J Physiol (Lond) 492:129–142

    Google Scholar 

  60. Pellegrini-Giampietro DE, Gorter JA, Bennett MV, Zukin RS (1997) The GluR2 (GluR-B) hypothesis: Ca (2+)-permeable AMPA receptors in neurological disorders. Trends Neurosci 20:464–470

    Article  CAS  PubMed  Google Scholar 

  61. Akbarian S, Smith M, Jones E (1995) Editing for an AMPA receptor subunit RNA in prefrontal cortex and striatum in Alzheimer’s disease, Huntington’s disease and schizophrenia. Brain Res 699:297–304

    Article  CAS  PubMed  Google Scholar 

  62. Paschen W, Hedreen J, Ross C (1994) RNA editing of the glutamate receptor subunits GluR2 and GluR6 in human brain tissue. J Neurochem 63:1596–1602

    CAS  PubMed  Google Scholar 

  63. Pellegrini-Giampietro DE, Bennett MV, Zukin RS (1994) AMPA/kainate receptor gene expression in normal and Alzheimer’s disease hippocampus. Neuroscience 61:41–49

    Google Scholar 

  64. Rump A, Sommer C, Gass P, Bele S, Meissner D, Kiessling M (1996) Editing of GluR2 RNA in the gerbil hippocampus after global cerebral ischemia. J Cerebral Blood Flow Metabol 16:1362–1365

    Article  CAS  Google Scholar 

  65. Kamphuis W, Lopes da Silva F (1995) Editing status at the Q/R site of glutamate receptor-A, -B, -5 and −6 subunit mRNA in the hippocampal kindling model of epilepsy. Mol Brain Res 29:35–42

    Article  CAS  PubMed  Google Scholar 

  66. Takuma H, Kwak S, Yoshizawa T, Kanazawa I (1999) Reduction of GluR2 RNA editing, a molecular change that increases calcium influx through AMPA receptors, selective in the spinal ventral gray of patients with amyotrophic lateral sclerosis. Ann Neurol 46:806–815

    Article  CAS  PubMed  Google Scholar 

  67. Kawahara Y, Ito K, Sun H, Aizawa H, Kanazawa I, Kwak S (2004) RNA editing and death of motor neurons. Nature 427:801

    Article  CAS  PubMed  Google Scholar 

  68. Kawahara Y, Ito K, Sun H, Kanazawa I, Kwak S (2003) Low editing efficiency of GluR2 mRNA is associated with a low relative abundance of ADAR2 mRNA in white matter of normal human brain. Eur J Neurosci 18:23–33

    Google Scholar 

  69. Suzuki T, Tsuzuki K, Kameyama K, Kwak S (2003) Recent advances in the study of AMPA receptors. Folia Pharmacol Jpn 122:515–526

    Article  CAS  Google Scholar 

  70. Greger IH, Khatri L, Kong X, Ziff EB (2003) AMPA receptor tetramerization is mediated by Q/R editing. Neuron 40:763–774

    Article  CAS  PubMed  Google Scholar 

  71. Greger IH, Khatri L, Ziff EB (2002) RNA editing at Arg607 controls AMPA receptor exit from the endoplasmic reticulum. Neuron 34:759–772

    Article  CAS  PubMed  Google Scholar 

  72. Kim U, Wang Y, Sanford T, Zeng Y, Nishikura K (1994) Molecular cloning of cDNA for double-stranded RNA adenosine deaminase, a candidate enzyme for nuclear RNA editing. Proc Natl Acad Sci U S A 91:11457–11461

    Google Scholar 

  73. O’Connell MA, Krause S, Higuchi M, Hsuan JJ, Totty NF, Jenny A, Keller W (1995) Cloning of cDNAs encoding mammalian double-stranded RNA-specific adenosine deaminase. Mol Cell Biol 15:1389–1397

    PubMed  Google Scholar 

  74. Melcher T, Maas S, Herb A, Sprengel R, Seeburg P, Higuchi M (1996) A mammalian RNA editing enzyme. Nature 379:460–464

    Article  CAS  PubMed  Google Scholar 

  75. Melcher T, Maas S, Herb A, Sprengel R, Higuchi M, Seeburg PH (1996) RED2, a brain-specific member of the RNA-specific adenosine deaminase family. J Biol Chem 271:31795–31798

    Article  CAS  PubMed  Google Scholar 

  76. O’Connell MA, Gerber A, Keller W (1997) Purification of human double-stranded RNA-specific editase 1 (hRED1) involved in editing of brain glutamate receptor B pre-mRNA. J Biol Chem 272:473–478

    Article  PubMed  Google Scholar 

  77. Chen CX, Cho DS, Wang Q, Lai F, Carter KC, Nishikura K (2000) A third member of the RNA-specific adenosine deaminase gene family, ADAR3, contains both single- and double-stranded RNA binding domains. RNA 6:755–767

    Article  CAS  Google Scholar 

  78. Lai F, Chen C, Carter K, Nishikura K (1997) Editing of glutamate receptor B subunit ion channel RNAs by four alternatively spliced DRADA2 double-stranded RNA adenosine deaminases. Mol Cell Biol 17:2413–2424

    CAS  PubMed  Google Scholar 

  79. Gerber A, O’Connell M, Keller W (1997) Two forms of human double-stranded RNA-specific editase 1 (hRED1) generated by the insertion of an Alu cassette. RNA 3:453–463

    CAS  Google Scholar 

  80. Higuchi M, Single F, Kohler M, Sommer B, Sprengel R, Seeburg P (1993) RNA editing of AMPA receptor subunit GluR-B: a base-paired intron-exon structure determines position and efficiency. Cell 75:1361–1370

    CAS  PubMed  Google Scholar 

  81. Herb A, Higuchi M, Sprengel R, Seeburg PH (1996) Q/R site editing in kainate receptor GluR5 and GluR6 pre-mRNAs requires distant intronic sequences. Proc Natl Acad Sci U S A 93:1875–1880

    Google Scholar 

  82. Aruscavage PJ, Bass BL (2000) A phylogenetic analysis reveals an unusual sequence conservation within introns involved in RNA editing. RNA 6:257–269

    Article  CAS  Google Scholar 

  83. Wang Q, Khillan J, Gadue P, Nishikura K (2000) Requirement of the RNA editing deaminase ADAR1 gene for embryonic erythropoiesis. Science 290:1765–1768

    Article  CAS  PubMed  Google Scholar 

  84. Higuchi M, Maas S, Single FN, Hartner J, Rozov A, Burnashev N, Feldmeyer D, Sprengel R, Seeburg PH (2000) Point mutation in an AMPA receptor gene rescues lethality in mice deficient in the RNA-editing enzyme ADAR2. Nature 406:78–81

    Article  CAS  PubMed  Google Scholar 

  85. Bernard A, Khrestchatisky M (1994) Assessing the extent of RNA editing in the TMII regions of GluR5 and GluR6 kainate receptors during rat brain development. J Neurochem 62:2057–2060

    CAS  PubMed  Google Scholar 

  86. Paschen W, Djuricic B (1994) Extent of RNA editing of glutamate receptor subunit GluR5 in different brain regions of the rat. Cell Mol Neurobiol 14:259–270

    CAS  PubMed  Google Scholar 

  87. Paschen W, Djuricic B (1995) Regional differences in the extent of RNA editing of the glutamate receptor subunits GluR2 and GluR6 in rat brain. J Neurosci Methods 56:21–29

    Google Scholar 

  88. Garcia-Barcina JM, Matute C (1996) Expression of kainate-selective glutamate receptor subunits in glial cells of the adult bovine white matter. Eur J Neurosci 8:2379–2387

    Google Scholar 

  89. de Zulueta MP de, Matute C (1999) Reduced editing of low-affinity kainate receptor subunits in optic nerve glial cells. Brain Res Mol Brain Res 73:104–109

    PubMed  Google Scholar 

  90. Lowe D, Jahn K, Smith D (1997) Glutamate receptor editing in the mammalian hippocampus and avian neurons. Brain Res Mol Brain Res 48:37–44

    Article  CAS  PubMed  Google Scholar 

  91. Kawahara Y, Ito K, Sun H, Ito M, Kanazawa I, Kwak S (2004) Regulation of glutamate receptor RNA editing and ADAR mRNA expression in developing human normal and Down’s syndrome brains. Brain Res Dev Brain Res 148:151–155

    Article  CAS  PubMed  Google Scholar 

  92. Carlson NG, Howard J, Gahring LC, Rogers SW (2000) RNA editing (Q/R site) and flop/flip splicing of AMPA receptor transcripts in young and old brains. Neurobiol Aging 21:599–606

    Article  CAS  PubMed  Google Scholar 

  93. Seeburg PH (2002) A-to-I editing: new and old sites, functions and speculations. Neuron 35:17–20

    Article  CAS  PubMed  Google Scholar 

  94. Maas S, Patt S, Schrey M, Rich A (2001) Underediting of glutamate receptor GluR-B mRNA in malignant gliomas. Proc Natl Acad Sci U S A 98:14687–14692

    Google Scholar 

  95. Kortenbruck G, Berger E, Speckmann EJ, Musshoff U (2001) RNA editing at the Q/R site for the glutamate receptor subunits GLUR2, GLUR5, and GLUR6 in hippocampus and temporal cortex from epileptic patients. Neurobiol Dis 8:459–468

    Article  CAS  PubMed  Google Scholar 

  96. Seifert G, Steinhauser C (1995) Glial cells in the mouse hippocampus express AMPA receptors with an intermediate Ca2+ permeability. Eur J Neurosci 7:1872–1881

    Google Scholar 

  97. Geiger JR, Melcher T, Koh DS, Sakmann B, Seeburg PH, Jonas P, Monyer H (1995) Relative abundance of subunit mRNAs determines gating and Ca2+ permeability of AMPA receptors in principal neurons and interneurons in rat CNS. Neuron 15:193–204

    Article  CAS  PubMed  Google Scholar 

  98. Paupard MC, O’Connell MA, Gerber AP, Zukin RS (2000) Patterns of developmental expression of the RNA editing enzyme rADAR2. Neuroscience 95:869–879

    Google Scholar 

  99. Schmitt J, Dux E. Gissel C, Paschen W (1996) Regional analysis of developmental changes in the extent of GluR6 mRNA editing in rat brain. Brain Res Dev Brain Res 91:153–157

    Article  CAS  PubMed  Google Scholar 

  100. Bernard A, Ferhat L, Dessi F, Charton G, Represa A, Ben-Ari Y, Khrestchatisky M (1999) Q/R editing of the rat GluR5 and GluR6 kainate receptors in vivo and in vitro: evidence for independent developmental, pathological and cellular regulation. Eur J Neurosci 11:604–616

    Google Scholar 

  101. Paschen W, Dux E, Djuricic B (1994) Developmental changes in the extent of RNA editing of glutamate receptor subunit GluR5 in rat brain. Neurosci Lett 174:109–112

    Article  CAS  PubMed  Google Scholar 

  102. Lai F, Chen CX, Lee VM, Nishikura K (1997) Dramatic increase of the RNA editing for glutamate receptor subunits during terminal differentiation of clonal human neurons. J Neurochem 69:43–52

    CAS  PubMed  Google Scholar 

  103. Grigorenko EV, Bell WL, Glazier S, Pons T, Deadwyler S (1998) Editing status at the Q/R site of the GluR2 and GluR6 glutamate receptor subunits in the surgically excised hippocampus of patients with refractory epilepsy. NeuroReport 9:2219–2224

    CAS  Google Scholar 

  104. Dabiri GA, Lai F, Drakas RA, Nishikura K (1996) Editing of the GLuR-B ion channel RNA in vitro by recombinant double-stranded RNA adenosine deaminase. EMBO J 15:34–45

    CAS  PubMed  Google Scholar 

  105. Yang J, Sklar P, Axel R, Maniatis T (1997) Purification and characterization of a human RNA adenosine deaminase for glutamate receptor B pre-mRNA editing. Proc Natl Acad Sci USA 94:4354–4359

    Google Scholar 

  106. Saccomanno L, Bass BL (1994) The cytoplasm of Xenopus oocytes contains a factor that protects double-stranded RNA from adenosine-to-inosine modification. Mol Cell Biol 14:5425–5432

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported, in part, by a grant from the ALS Association (to S.K.), grants-in-aid for Scientific Research on Priority Areas from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (13210031,14017020, 15016030 to S.K.), a grant from The Nakabayashi Trust for ALS Research (to Y.K.), a grant from The Naito Foundation (to Y.K.), and a grant from the Japan ALS Association (to Y.K.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shin Kwak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kwak, S., Kawahara, Y. Deficient RNA editing of GluR2 and neuronal death in amyotropic lateral sclerosis. J Mol Med 83, 110–120 (2005). https://doi.org/10.1007/s00109-004-0599-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-004-0599-z

Keywords

Navigation