Skip to main content

Advertisement

Log in

Global 5-HT depletion attenuates the ability of amphetamine to decrease impulsive choice on a delay-discounting task in rats

Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Psychomotor stimulant drugs such as methylphenidate and amphetamine decrease impulsive behaviour in attention deficit hyperactivity disorder patients by unknown mechanisms. Although most behavioural effects of amphetamine are attributed to the dopaminergic system, some recent evidence suggests a role for serotonin in this paradoxical "calming" effect.

Objectives

To investigate whether forebrain serotonin depletion affects the action of amphetamine in the rat on a delayed reward task where impulsive choice is measured as the selection of a smaller immediate over a larger delayed reward.

Methods

Following behavioural training, rats received i.c.v. infusions of either vehicle (n=10) or the serotonergic neurotoxin 5,7-DHT (n=10). Post-operatively, animals received i.p. d-amphetamine (0.3,1.0,1.5, and 2.3 mg/kg/ml), and d-amphetamine co-administered with the dopamine antagonist cis-z-flupenthixol.

Results

5,7-DHT (i.c.v.) itself did not affect choice behaviour, despite depleting forebrain serotonin levels by over 85%. Amphetamine increased choice for the large reward, i.e. decreased impulsivity. This effect was attenuated by 5-HT depletion, particularly in animals showing a high level of impulsive choice. Co-administration of cis-z-flupenthixol (0.125 mg/kg) with d-amphetamine abolished the effect of amphetamine in the lesioned group, whereas this was only partially attenuated in the vehicle control group.

Conclusions

These data suggest that the ability of amphetamine to decrease impulsivity is not solely due to its effects on dopaminergic systems, but may also depend on serotonergic neurotransmission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1A, B.
Fig. 2.
Fig. 3.
Fig. 4A, B.
Fig. 5.

References

  • Ainslie G (1975) Specious reward: a behavioral theory of impulsiveness and impulse control. Psychol Bull 82:463–498

    Article  CAS  PubMed  Google Scholar 

  • Amara SG, Kuhar MJ (1993) neurotransmitter transporters—recent progress. Ann Rev Neurosci 16:73–93

    Article  CAS  PubMed  Google Scholar 

  • Barkley RA (1989) The problem of stimulus control and rule-governed behaviour in attention deficit disorder with hyperactivity. In: Bloomingdale LM, Swanson J (eds) Attention deficit disorder: current concepts and emerging trends in attentional and behavioral disorders of childhood. Pergamon, Elmsford, pp 203–232

  • Bizot JC, Le Bihan C, Puech AJ, Hamon M, Thiebot MH (1999) Serotonin and tolerance to delay of reward in rats. Psychopharmacology 146:400–412

    Article  CAS  PubMed  Google Scholar 

  • Bjorkland A, Baumgarten HD, Rensch A (1975) 5,7-Dihydroxytryptamine: improvement of its selectivity for serotonin neurons in the CNS by treatment with desipramine. J Neurochem 24:833–835

    Article  Google Scholar 

  • Breese GR, Cooper BR, Mueller RA (1974) Evidence for the involvement of 5-hydroxytryptamine in the actions of amphetamine. Br J Pharmacol 52:307–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cador M, Taylor JR, Robbins TW (1991) Potentiation of the effects of reward-related stimuli and the dopaminergic-dependent mechanisms of the nucleus accumbens. Psychopharmacology 104:377–385

    Article  CAS  PubMed  Google Scholar 

  • Cardinal RN, Robbins TW, Everitt BJ (2000) The effects of D-amphetamine, chlordiazepoxide, alpha-flupenthixol and behavioural manipulations on choice of signalled and unsignalled delayed reinforcement in rats. Psychopharmacology 152:362–375

    Article  CAS  PubMed  Google Scholar 

  • Chiang TJ, Al-Ruwaitea ASA, Mobini S, Ho MY, Bradshaw CM, Szabadi E (2000) The effect of D-amphetamine on performance on two operant timing schedules. Psychopharmacology 150:170–184

    Article  CAS  PubMed  Google Scholar 

  • Cole BJ, Robbins TW (1987) Amphetamine impairs the discriminative performance of rats with dorsal noradrenergic bundle lesions on a 5-choice serial reaction time task: new evidence for central dopaminergic-noradrenergic interactions. Psychopharmacology 91:458–466

    Article  CAS  PubMed  Google Scholar 

  • Cochran WG, Cox GM (1957) Experimental designs, 2nd edn. Wiley, New York

  • Crean J, Richards JB, de Wit H (2002) Effect of tryptophan depletion on impulsive behavior in men with or without a family history of alcoholism. Behav Brain Res 136:349–357

    Article  CAS  PubMed  Google Scholar 

  • Dalley JW, Theobald DE, Eagle DM, Passetti F, Robbins TW (2002) Deficits in impulse control associated with tonically-elevated serotonergic function in rat prefrontal cortex. Neuropsychopharmacology 26:716–728

    Article  CAS  PubMed  Google Scholar 

  • de Wit H, Crean J, Richards JB (2000) Effects of D-amphetamine and ethanol on a measure of behavioral inhibition in humans. Behav Neurosci 114:830–837

    Article  Google Scholar 

  • de Wit H, Enggasser JL, Richards JB (2002) Acute administration of D-amphetamine decreases impulsivity in healthy volunteers. Neuropsychopharmacology 27:813–825

    Article  Google Scholar 

  • Depoortere R, Perrault G, Sanger DJ (1999) Intracranial self-stimulution under a progressive-ratio schedule in rats: effects of strength of stimulation, D-amphetamine, 7-OH-DPAT and haloperidol. Psychopharmacology 142:221–229

    Article  CAS  PubMed  Google Scholar 

  • Dougherty DD, Bonab AA, Spencer TJ, Rauch SL, Madras BK, Fischman AJ (1999) Dopamine transporter density in patients with attention deficit hyperactivity disorder. Lancet 354:2132–2133

    Article  CAS  PubMed  Google Scholar 

  • Ernst M, Zametkin AJ, Matochik JA, Jons PH, Cohen RM (1998) DOPA decarboxylase activity in attention deficit hyperactivity disorder adults. A [flourine-18]flourodopa positron emission tomographic study. J Neurosci 18:5901–5907

    CAS  PubMed  Google Scholar 

  • Evenden JL (1998) The pharmacology of impulsive behaviour in rats. III. The effects of amphetamine, haloperidol, imipramine, chlordiazepoxide and ethanol on a paced fixed consecutive number schedule. Psychopharmacology 138:295–304

    Article  CAS  PubMed  Google Scholar 

  • Evenden JL, Ryan CN (1996) The pharmacology of impulsive behaviour in rats: the effects of drugs on response choice with varying delays of reinforcement. Psychopharmacology 128:161–170

    Article  CAS  PubMed  Google Scholar 

  • Feola TW, de Wit H, Richards JB (2000) Effects of D-amphetamine and alcohol on a measure of behavioral inhibition in rats. Behav Neurosci 114:838–848

    Article  CAS  PubMed  Google Scholar 

  • Fletcher PJ, Ming Z-H, Higgins GA (1993) Conditioned place preference induced by micro-injection of 8-OH-DPAT into the dorsal or median raphe nucleus. Psychopharmacology 113:31–36

    Article  CAS  PubMed  Google Scholar 

  • Fletcher PJ, Korth KM, Sabijan MS, DeSousa NJ (1998) Injections of D-amphetamine into the ventral pallidum increase locomotor activity and responding for conditioned reward: a comparison with injections into the nucleus accumbens. Brain Res 805:29–40

    Article  CAS  PubMed  Google Scholar 

  • Fletcher PJ, Korth KM, Chambers JW (1999) Depletion of brain serotonin following intra-raphe injections of 5,7-dihydroxytryptamine does not alter D-amphetamine self-administration across different schedule and access conditions. Psychopharmacology 146:185–193

    Article  CAS  PubMed  Google Scholar 

  • Frantz KJ, Hansson KJ, Stouffer DG, Parsons LH (2002) 5-HT6 receptor antagonism potentiates the behavioral and neurochemical effects of amphetamine but not cocaine. Neuropharmacology 42:170–180

    Article  CAS  PubMed  Google Scholar 

  • Gainetdinov RR, Wetsel WC, Jones SR, Levin ED, Jaber M, Caron MG (1999) Role of serotonin in the paradoxical calming effect of psychostimulants on hyperactivity. Science 283:397–401

    Article  CAS  PubMed  Google Scholar 

  • Garrud P, Goodall G, Mackintosh NJ (1981) Overshadowing of a stimulus-reinforcer association by an instrumental response. Q J Exp Psychol 33B:123–135

    Article  Google Scholar 

  • Gibbon J, Malapani C, Dale CL, Gallistel CR (1997) Toward a neurobiology of temporal cognition: advances and challenges. Curr Opin Neurobiol 7:170–184

    Article  CAS  PubMed  Google Scholar 

  • Giros B, Caron MG (1993) Molecular characterization of the dopamine transporter. Trends Pharmacol Sci 14:43–49

    Article  CAS  PubMed  Google Scholar 

  • Giros B, Jaber M, Jones SR, Wightman RM, Caron MG (1996) Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter. Nature 379:606–612

    Article  CAS  PubMed  Google Scholar 

  • Haenlein M, Caul W (1987) Attention deficit disorder with hyperactivity: a specific hypothesis of reward dysfunction. J Am Acad Child Adolesc Psychiatry 26:356–362

    Article  CAS  PubMed  Google Scholar 

  • Harrison AA, Everitt BJ, Robbins TW (1997) Central 5-HT depletion enhances impulsive responding without affecting the accuracy of attentional performance: interactions with dopaminergic mechanisms. Psychopharmacology 133:329–342

    Article  CAS  PubMed  Google Scholar 

  • Ho MY, Mobini S, Chiang TJ, Bradshaw CM, Szabadi E (1999) Theory and method in the quantitative analysis of "impulsive choice" behaviour: implications for psychopharmacology. Psychopharmacology 146:362–372

    Article  CAS  PubMed  Google Scholar 

  • Hollister AS, Breese GR, Kuhn CM, Cooper BR, Schanberg SM (1976) An inhibitory role for brain serotonin-containing systems in the locomotor effects of D-amphetamine. J Pharmacol Exp Ther 198:12–22

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ickikawa J, Kuroki T, Kitchen MT, Meltzer HY (1995) R(+)-8-OH-DPAT, a 5-HT1A receptor agonist, inhibits amphetamine-induced dopamine release in rat striatum and nucleus accumbens. Eur J Pharmacol 287:179–184

    Article  Google Scholar 

  • Jones SR, Gainetdinov RR, Wightman RM, Caron MG (1998) Mechanisms of amphetamine action revealed in mice lacking the dopamine transporter. J Neurosci 18:1979–1986

    CAS  PubMed  Google Scholar 

  • Koob GF, Bloom FE (1988) Cellular and molecular mechanisms of drug-dependence. Science 242:715–723

    Article  CAS  PubMed  Google Scholar 

  • Krause K-H, Dresel SH, Krause J, Kung HF, Tatsch K (2000) Increased striatal dopamine transporter in adult patients with attention deficit hyperactivity disorder: effects of methylphenidate as measured by single photon emission computed tomography. Neurosci Lett 285:107–110

    Article  CAS  PubMed  Google Scholar 

  • Kuczenski R, Segal DS (1989) Concomitant characterisation of behavioral and striatal neurotransmitter response to amphetamine using in vivo microdialysis. J Neurosci 9:2051–2065

    CAS  PubMed  Google Scholar 

  • Kuczenski R, Segal DS (1995) Hippocampus norepinephrine, caudate dopamine and serotonin, and behavioral responses to the stereoisomers of amphetamine and methamphetamine. J Neurosci 15:1306–1317

    Google Scholar 

  • Kuczenski R, Segal DS, Leith NJ, Applegate CD (1987) Effects of amphetamine, methylphenidate, and apomorphine on regional brain serotonin and 5-hydroxyindole acetic acid. Psychopharmacology 93:329–335

    Article  CAS  PubMed  Google Scholar 

  • Kuroki T, Dai J, Meltzer HY, Ickikawa J (2000) R(+)-8-OH-DPAT, a selective 5-HT1A receptor agonist, attenuated amphetamine-induced dopamine synthesis in rat striatum, but not nucleus accumbens or medial frontal cortex. Brain Res 872:204–207

    Article  CAS  PubMed  Google Scholar 

  • Leccesse AP, Lyness WH (1984) The effects of putative 5-Hydroxytryptamine receptor active agents on D-amphetamine self-administration in controls and rats with 5,7-Dihydroxytryptamine median forebrain bundle lesions. Brain Res 303:153–162

    Article  Google Scholar 

  • Linnoila M, Virkkunen M, Scheinin M, Nuutila A, Rimon R, Goodwin FK (1983) Low cerebrospinal-fluid 5-hydroxyindoleacetic acid concentration differentiates impulsive from nonimpulsive violent behavior. Life Sci 33:2609–2614

    Article  CAS  PubMed  Google Scholar 

  • Logue AW (1988) Research on self-control—an integrating framework. Behav Brain Sci 13:419–419

    Google Scholar 

  • Lyness WH, Friedle NM, Moore KE (1980) Increased self-administration of D-amphetamine after destruction of 5-hydroxytryptaminergic nerves. Pharmacol Biochem Behav 12:937–941

    Article  CAS  PubMed  Google Scholar 

  • Mackintosh NJ, Dickinson A (1979) Instrumental (type II) conditioning. In: Dickinson A, Boakes RA (eds) Mechanisms of learning and motivation. Lawrence Erlbaum, Hillsdale, pp 143–167

  • Maricq AV, Church RM (1983) The differential effects of haloperidol and methamphetamine on time-estimation in the rat. Psychopharmacology 79:10–15

    Article  CAS  PubMed  Google Scholar 

  • Maricq AV, Roberts S, Church RM (1981) Methamphetamine and time estimation. J Exp Psychol Anim Behav Process 7:18–30

    Article  CAS  PubMed  Google Scholar 

  • Martin-Iverson MT, Wilkie D, Fibiger HC (1987) Effects of haloperidol and D-amphetamine on perceived quantity of food and tones. Psychopharmacology 93:374–381

    Article  CAS  PubMed  Google Scholar 

  • Mayorga AJ, Popke EJ, Fogle CM, Paule MG (2000) Similar effects of amphetamine and methylphenidate on the performance of complex operant tasks in rats. Behav Brain Res 109:59–68

    Article  CAS  PubMed  Google Scholar 

  • Mazur J (1987) An adjusting procedure for studying delayed reinforcement. In: Commons ML, Mazur JE, Nevin JA, Rachlin H (eds) Quantitative analyses of behaviour: the effect of delay and intervening events on reinforcement value. Erlbaum, Hillsdale, pp 55–73

  • Meck WH (1983) Selective adjustment of the speed of internal clock and memory processes. J Exp Psychol Anim Behav Process 9:171–201

    Article  CAS  PubMed  Google Scholar 

  • Mobini S, Chiang TJ, Ho MY, Bradshaw CM, Szabadi E (2000) Effects of central 5-hydroxytryptamine depletion on sensitivity to delayed and probabilistic reinforcement. Psychopharmacology 152:390–397

    Article  CAS  PubMed  Google Scholar 

  • Nigg J (1999) The AD/HD response-inhibition deficit as measured by the stop task: replication with DSM-IV combined type—extension and qualification. J Abnorm Child Psychol 27:393–402

    Article  CAS  PubMed  Google Scholar 

  • Oosterlaan J, Logan GD, Sergeant JA (1998) Response inhibition in AD/HD, CD, co-morbid AD/HD + CD, anxious and control children: a meta-analysis of studies with the stop task. J Child Psychol Psychiatry 39:411–425

    Article  CAS  PubMed  Google Scholar 

  • Palkovits M (1973) Isolated removal of hypothalamic or other brain nuclei of the rat. Brain Res 59:449–450

    Article  CAS  PubMed  Google Scholar 

  • Petry NM (2002) Discounting of delayed rewards in substance abusers: relationship to antisocial personality disorder. Psychopharmacology 162:425–432

    Article  CAS  PubMed  Google Scholar 

  • Poncelet M, Chermat R, Soubrie P, Simon P (1983) The progressive ratio schedule as a model for studying the psychomotor stimulant activity of drugs in the rat. Psychopharmacology 80:184–189

    Article  CAS  PubMed  Google Scholar 

  • Richards JB, Sabol KE, de Wit H (1999) Effects of methamphetamine on the adjusting amount procedure, a model of impulsive behavior in rats. Psychopharmacology 146:432–439

    Article  CAS  PubMed  Google Scholar 

  • Robbins TW (1976) Relationship between reward-enhancing and stereotypical effects of psychomotor stimulant drugs. Nature 264:57–59

    Article  CAS  PubMed  Google Scholar 

  • Robbins TW, Evenden JL (1985) Rate-independent approaches to the analysis of the behavioural effects of drugs. In: Lowe CF, Blackman DE, Richelle M (eds) Behaviour analysis and contemporary psychology. Erlbaum, London, pp 217–256

  • Robbins TW, Watson BA, Gaskin M, Ennis C (1983) Contrasting interactions of pipradol, D-amphetamine, cocaine, cocaine analogues, apomorphine and other drugs with conditioned reinforcement. Psychopharmacology 80:113–119

    Article  CAS  PubMed  Google Scholar 

  • Robinson TE, Berridge KC (1993) The neural basis of drug craving: an incentive-sensitisation theory of addiction. Brain Res Rev 18:247–291

    Article  CAS  PubMed  Google Scholar 

  • Rogers RD, Everitt BJ, Baldacchino A, Blackshaw AJ, Swainson R, Wynne K, Baker NB, Hunter J, Carthy T, Booker E, London M, Deakin JFW, Sahakian BJ, Robbins TW (1999) Dissociable deficits in the decision-making cognition of chronic amphetamine abusers, opiate abusers, patients with focal damage to prefrontal cortex, and tryptophan-depleted normal volunteers: evidence for monoaminergic mechanisms. Neuropsychopharmacology 20:322–339

    Article  CAS  PubMed  Google Scholar 

  • Rogers RD, Tunbridge EM, Bhagwagar Z, Drevets WC, Sahakian BJ, Carter CS (2003) Tryptophan depletion alters decision-making of healthy volunteers through altered processing of reward cues. Neuropsychopharmacology 28:153–162

    Article  CAS  PubMed  Google Scholar 

  • Sagvolden T, Sergeant JA (1998) Attention deficit/hyperactivity disorder—from brain dysfunctions to behaviour. Behav Brain Res 94:1–10

    Article  CAS  PubMed  Google Scholar 

  • Sahakian BJ, Robbins TW (1977) Are the effects of psychomotor stimulant drugs on hyperactive children really paradoxical? Med Hypotheses 3:154–158

    Article  CAS  PubMed  Google Scholar 

  • Schachar R, Logan GD (1990) Impulsivity and inhibitory control in normal development and childhood psychopathology. Dev Psychol 26:710–720

    Article  Google Scholar 

  • Schultz W, Romo R (1990) Dopamine neurons of the monkey midbrain: contingencies of responses to stimuli eliciting immediate behavioral reactions. J Neurophysiol 63:607–624

    Article  CAS  PubMed  Google Scholar 

  • Segal DS, Kuczenski R (1987) Individual differences in responsiveness to single and repeated amphetamine administration: behavioural characteristics and neurochemical correlates. J Pharmacol Exp Ther 242:917–926

    CAS  PubMed  Google Scholar 

  • Seiden LS, Sabol KE (1993) Amphetamine—effects on catecholamine systems and behavior. Ann Rev Pharmacol Toxicol 33:639–677

    Article  CAS  Google Scholar 

  • Sills TL, Greenshaw AJ, Baker GB, Fletcher PJ (1999) The potentiating effect of sertraline and fluoxetine on amphetamine-induced locomotor activity is not mediated by serotonin. Psychopharmacology 143:426–432

    Article  CAS  PubMed  Google Scholar 

  • Solanto MV (1998) Neuropsychopharmacological mechanisms of stimulant drug action in attention-deficit hyperactivity disorder: a review and integration. Behav Brain Res 94:127–152

    Article  CAS  PubMed  Google Scholar 

  • Sonuga-Barke EJS (2002) Psychological heterogeneity in AD/HD—a dual pathway model of behaviour and cognition. Behav Brain Res 130:29–36

    Article  PubMed  Google Scholar 

  • Sonuga-Barke EJS, Taylor E (1992a) The effect of delay on hyperactive and non-hyperactive children's response times. J Child Psychol Psychiatry 33:1091–1096

    Article  CAS  PubMed  Google Scholar 

  • Sonuga-Barke EJS, Taylor E, Sembi S, Smith J (1992b) Hyperactivity and delay aversion. I. The effect of delay on choice. J Child Psychol Psychiatry 33:387–398

    Article  CAS  PubMed  Google Scholar 

  • Sonuga-Barke EJS, Williams E, Hall M, Saxton T (1996) Hyperactivity and delay aversion. III. The effect on cognitive style of imposing delay after errors. J Child Psychol Psychiatry 37:189–194

    Article  CAS  PubMed  Google Scholar 

  • Soubrié P (1986) Reconciling the role of central serotonin neurons in human and animal behavior. Behav Brain Sci 9:319–364

    Article  Google Scholar 

  • Thiebot MH, Lebihan C, Soubrie P, Simon P (1985) Benzodiazepines reduce the tolerance to reward delay in rats. Psychopharmacology 86:147–152

    Article  CAS  PubMed  Google Scholar 

  • Wade TR, de Wit H, Richards JB (2000) Effects of dopaminergic drugs on delayed reward as a measure of impulsive behavior in rats. Psychopharmacology 150:90–101

    Article  CAS  PubMed  Google Scholar 

  • Wenger GR, Dews PB (1976) The effects of phencyclidine, ketamine, D-amphetamine and pentobarbital on schedule-controlled behavior in the mouse. J Pharmacology Exp Ther 196:616–624

    CAS  Google Scholar 

  • Wilson C, Nomikos GC, Collu M, Fibiger HC (1995) Dopaminergic correlates of motivated behaviour: importance of drive. J Neurosci 15:5169–5178

    CAS  PubMed  Google Scholar 

  • Winstanley CA, Robbins TW (2002) Fractionating impulsivity: effects of global 5-HT depletion on different measures of impulsivity (abstract 682.16). Society for Neuroscience Program

    Google Scholar 

  • Wise RA (1978) Neuroleptic-induced anhedonia in rats: pimozide blocks reward quality of food. Science 201:262–264

    Article  CAS  PubMed  Google Scholar 

  • Wise RA, Rompre PP (1989) Brain dopamine and reward. Ann Rev Psychol 40:191–225

    Article  CAS  Google Scholar 

  • Wogar MA, Bradshaw CM, Szabadi E (1991) Evidence for an involvement of 5-Hydroxytryptaminergic neurons in the maintenance of operant behavior by positive reinforcement. Psychopharmacology 105:119–124

    Article  CAS  PubMed  Google Scholar 

  • Wogar MA, Bradshaw CM, Szabadi E (1993) Effects of lesions of the ascending 5-Hydroxytryptaminergic pathways on choice between delayed reinforcers. Psychopharmacology 111:239–243

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a Wellcome Trust Programme grant and completed within the MRC Centre for Behavioural and Clinical Neuroscience. CAW was supported by an MRC Studentship.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Winstanley, C.A., Dalley, J.W., Theobald, D.E.H. et al. Global 5-HT depletion attenuates the ability of amphetamine to decrease impulsive choice on a delay-discounting task in rats. Psychopharmacology 170, 320–331 (2003). https://doi.org/10.1007/s00213-003-1546-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-003-1546-3

Keywords

Navigation