Skip to main content
Log in

Neuroendocrine response to intravenous citalopram in healthy control subjects: pharmacokinetic influences

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

The neuroendocrine response to intravenous citalopram may provide an acute, functional, in vivo measure of the neural serotonin (5-HT) system.

Objective

To refine the quantification of acute neuroendocrine responses following intravenous citalopram in studies of 5-HT function.

Methods

In 75 adult healthy subjects taking part in four similar protocols, we measured plasma prolactin and cortisol, as well as serial citalopram concentrations following intravenous citalopram (10 mg, 20 mg, 40 mg, 0.33 mg/kg) and placebo. The relationship between the AUC for intravenous citalopram during the first 150 min (AUC150) and the magnitude of the neuroendocrine response was determined. The role of pharmacokinetic (PK) parameters, as well as sensitivity to placebo injections, in influencing the neuroendocrine response to citalopram was then evaluated.

Results

Citalopram produced a dose-dependent increase in cortisol and prolactin. The maximal increase from baseline correlated significantly but modestly with citalopram’s AUC150 (prolactin r2=0.23, P<0.0001; cortisol r2=0.3, P<0.0001). Additionally, citalopram’s AUC150 was affected by between-subject differences in both the peripheral and central volume of distribution. However, the neuroendocrine responses to citalopram did not correlate with the responses to placebo.

Conclusions

The parenteral citalopram challenge test is characterized by a modest concentration-response relationship, with concentration influenced by variable PK factors. Accounting for individual differences in drug distribution may improve the power of the citalopram challenge test, when used as an in vivo measure of central 5-HT function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Attenburrow M-J, Mitter PR, Whale R, Terao T, Cowen PJ (2001) Low-dose citalopram as a 5-HT neuroendocrine probe. Psychopharmacology 155:323–326

    Article  CAS  PubMed  Google Scholar 

  • Bhagwagar Z, Hafizi S, Cowen PJ (2002a) Acute citalopram administration produces correlated increases in plasma and salivary cortisol. Psychopharmacology 163:118–120

    Article  CAS  PubMed  Google Scholar 

  • Bhagwagar Z, Whale R, Cowen PJ (2002b) State and trait abnormalities in serotonin function in major depression. Br J Psychiatry 180:24–28

    Article  PubMed  Google Scholar 

  • Bies RR, Lotrich FE, Smith G, Muldoon M, Pollock BG (2003) Pharmacokinetics of citalopram after IV infusion. Clin Pharmacol Ther 24–28:71

    Google Scholar 

  • Calil HM, Lesieur P, Gold PW, Brown GM, Zavadil AP, Potter WZ (1984) Hormonal responses to zimelidine and desipramine in depressed patients. Psychiatry Res 13:231–242

    Article  CAS  PubMed  Google Scholar 

  • Catterson ML, Preskorn SH (1996) Pharmacokinetics of selective serotonin reuptake inhibitors: clinical relevance. Pharmacol Ther 78:203–208

    CAS  Google Scholar 

  • Duncan WCJ (1996) Circadian rhythms and the pharmacology of affective illness. Pharmacol Ther 71:253–312

    Article  CAS  PubMed  Google Scholar 

  • Faravelli C, Brat A, Marchetti G, Franchi F, Padeletti L, Michelucci A et al (1983) Cardiac effects of clomipramine treatment. ECG and left ventricular systolic time intervals. Neuropsychobiology 9:113–118

    CAS  PubMed  Google Scholar 

  • Foglia JP, Pollock BG, Kirshner MA, Rosen J, Sweet R, Mulsant B (1997) Plasma levels of citalopram enantiomers and metabolites in elderly patients. Psychopharmacol Bull 33:109–112

    CAS  PubMed  Google Scholar 

  • Furlong RA, Ho L, Walsh C, Rubinsztein JW, Jain S, Paykel ES et al. (1999) Analysis and meta-analysis of two serotonin transporter gene polymorphisms in bipolar and unipolar affective disorders. Am J Med Genet 81:58–63

    Article  Google Scholar 

  • Golden RN, Gilmore JH, Carson SW (1991) Antidepressant challenge tests: the interface of pharmacokinetics and pharmacodynamics. Psychopharmacol Bull 27:611–617

    CAS  PubMed  Google Scholar 

  • Golden RN, Hsiao J, Lane E, Rogers S, Hicks R, Potter WZ (1989) The effects of intravenous clomipramine on neurohormones in healthy subjects. J Clin Endocrinol Metab 68:632–637

    Google Scholar 

  • Golden RN, Heine AD, Ekstrom RD, Bebchuk JM, Leatherman ME, Garbutt JC (2002) A longitudinal study of serotonergic function in depression. Neuropsychopharmacology 26:653–659

    Article  CAS  PubMed  Google Scholar 

  • Gotjen D, Szabo Z, Lee S, Wand G (2002) Hormone responses to citalopram in abstinent alcohol dependent subjects. Alcohol Clin Exp Res 26:1625–1631

    CAS  PubMed  Google Scholar 

  • Guelfi JD, Strub N, Loft H (2000) Efficacy of intravenous citalopram compared with oral citalopram for severe depression: safety and efficacy data from a double-blind, double-dummy trial. J Affect Dis 58:201–209

    Article  CAS  PubMed  Google Scholar 

  • Hall H, Ogren SO (1981) Effects of antidepressant drugs on different receptors in the brain. Eur J Pharmacol 70:393–407

    Article  CAS  PubMed  Google Scholar 

  • Henning J, Netter P (2002) Oral application of citalopram (20 mg) and its usefulness for neuroendocrine challenge tests. Int J Neuropsychopharmacol 5:67–71

    Article  CAS  PubMed  Google Scholar 

  • Hiemke C, Hartter S (2000) Pharmacokinetics of selective serotonin reuptake inhibitors. Pharmacol Ther 85:11–28

    Article  CAS  PubMed  Google Scholar 

  • Hyttel J (1982) Citalopram—pharmacologic profile of a specific serotonin uptake inhibitor with antidepressant activity. Prog Neuropsychopharmacol Biol Psychiatry 6:277–295

    CAS  PubMed  Google Scholar 

  • Joffe P, Larsen FS, Pedersen V, Ring-Larsen H, Aaes-Jorgensen T, Sidhu J (1998) Single-dose pharmacokinetics of citalopram in patients with moderate renal insufficiency or hepatic cirrhosis compared with healthy subjects. Eur J Clin Pharmacol 54:237–242

    Google Scholar 

  • Judson R (2003) Using multiple drug exposure levels to optimize power in pharmacogenetic trials. J Clin Pharmacol 43:816–824

    Google Scholar 

  • Kapitany T, Schindl M, Schindler SD, Hesselmann B, Fureder T, Barnas C et al. (1999) The citalopram challenge test in patients with major depression and in healthy controls. Psychiatry Res 88:75–88

    Article  CAS  PubMed  Google Scholar 

  • Kasper S, Muller-Spahn F (2002) Intravenous antidepressant treatment: focus on citalopram. Eur Arch Psychiatr Clin Neurosci 252:105–109

    Article  CAS  Google Scholar 

  • Kojima H, Terao T, Iwakawa M, Soya A, Inoue N, Shiraishi Y et al. (2003) Paroxetine as a 5-HT neuroendocrine probe. Psychopharmacology 167:97–102

    CAS  PubMed  Google Scholar 

  • Kragh-Sorenson P, Overo KF, Petersen OL, Jensen K, Parnas W (1981) The kinetics of citalopram: single and multiple dose studies in man. Acta Pharmacol Toxicol 48:53–60

    Google Scholar 

  • Leonard HL, Meyer MC, Swedo SE, Richter D, Hamburger SD, Allen AJ et al. (1995) Electrocardiographic changes during desipramine and clomipramine treatment in children and adolescents. J Am Acad Child Adolesc Psychiatry 34:1460–1468

    Article  CAS  PubMed  Google Scholar 

  • Lotrich FE, Pollock BG (2004) Meta-analysis of serotonin transporter polymorphisms and affective disorder. Psychiatr Gen (in press)

  • Lowy MT, Meltzer HY (1987) Dexamethasone bioavailability: Implications for DST research. Biol Psychiatry 22:373–385

    Article  CAS  PubMed  Google Scholar 

  • Manuck SB, Flory JD, Ferrell RE, Mann JJ, Muldoon MF (2000) A regulatory polymorphism of the monoamine oxidase-A gene may be associated with variability in aggression, impulsivity, and central nervous system serotonergic responsivity. Psychiatry Res 95:9–23

    Article  CAS  PubMed  Google Scholar 

  • McCann UD, Seiden LS, Rubin LJ, Ricaurte GA (1997) Brain serotonin neurotoxicity and primary pulmonary hypertension from fenfluramine and dexfenfluramine: a systematic review of the evidence. JAMA 278:666–672

    Article  CAS  PubMed  Google Scholar 

  • Millan MJ, Gobert A, Lejeune F, Newman-Tancredi A, Rivet J-M, Auclair A et al. (2001) S33005, a novel ligand at both serotonin and norepinephrine transporters. I. Receptor binding, electrophysiological, and neurochemical profile in comparison with venlafaxine, reboxetine, citalopram, and clomipramine. J Pharmacol Exp Ther 298:565–580

    CAS  PubMed  Google Scholar 

  • Mork A, Kreilgaard M, Sanchez C (2003) The R-enantiomer of citalopram counteracts escitalopram-induced increase in extracellular 5-HT in the frontal cortex of freely moving rats. Neuropharmacology 45:167–173

    Article  CAS  PubMed  Google Scholar 

  • Muldoon MF, Manuck SB, Jansma CL, Moore AL, Perel J, Mann JJ (1996) d,l-Fenfluramine challenge test: experience in nonpatient sample. Biol Psychiatry 39:761–768

    Article  CAS  PubMed  Google Scholar 

  • Netter P, Toll C, Lujic C, Reuter M, Henning J (2002) Addictive and nonaddictive smoking as related to responsivity to neurotransmitter systems. Behav Pharmacol 13:441–449

    CAS  PubMed  Google Scholar 

  • Nierenberg AA, Feinstein AR (1988) How to evaluate a diagnostic marker test: lessons from the rise and fall of dexamethasone suppression test. JAMA 259:1699–1702

    Article  CAS  PubMed  Google Scholar 

  • O’Sullivan BT, Cutler DJ, Hunt GE, Walters C, Johnson GF, Caterson ID (1997) Pharmacokinetics of dexamethasone and its relationship to dexamethasone suppression test outcome in depressed patients and healthy control subjects. Biol Psychiatry 41:574–584

    Article  CAS  PubMed  Google Scholar 

  • Overo KF (1982) Kinetics of citalopram in man; plasma levels in patients. Prog Neuropsychopharmacol Biol Psychiatry 6:311–318

    PubMed  Google Scholar 

  • Overo KF, Toft B, Christophersen L, Gylding-Sabroe JP (1985) Kinetics of citalopram in elderly patients. Psychopharmacology 86:253–257

    PubMed  Google Scholar 

  • Pettersson E (1995) Studies of four novel diphenylbutylpiperazinepyridyl derivatives on release and inhibition of reuptake of dopamine, serotonin and noradrenaline by rat brain in vitro. Eur J Pharmacol 282:131–135

    Article  CAS  PubMed  Google Scholar 

  • Powers JD (1993) Statistical considerations in pharmacokinetic study design. Clin Pharmacokinet 24:380–387

    Google Scholar 

  • Reis M, Lundmark J, Bengtsson F (1997) Therapeutic drug monitoring of racemic citalopram: a 5-year experience in Sweden 1992–1997. Ther Drug Monit 25:183–191

    Article  Google Scholar 

  • Reist C, Mazzanti C, Vu R, Tran D, Goldman D (2001) Serotonin transporter promoter polymorphism is associated with attenuated prolactin response to fenfluramine. Am J Med Genet 105:363–368

    Article  CAS  PubMed  Google Scholar 

  • Rochat B, Baumann P, Audus KL (1999) Transport mechanisms for the antidepressant citalopram in brain microvessel endothelium. Brain Res 931:229–236

    Article  Google Scholar 

  • Rothman RB, Baumann MH, Savage JE, Rauser L, McBride A, Hufeisen SJ et al. (2000) Evidence for possible involvement of 5-HT(2B) receptors in the cardiac valvulopathy associated with fenfluramine and other serotonergic medications. Circulation 102:2836–2841

    CAS  PubMed  Google Scholar 

  • Rujescu D, Giegling I, Sato T, Hartmann AM, Moller HJ (2003) Genetic variations in tryptophan hydroxylase in suicidal behavior: analysis and meta-analysis. Biol Psychiatry 54:465–473

    Article  CAS  PubMed  Google Scholar 

  • Seifritz E, Baumann P, Muller MJ, Annen O, Amey M, Hemmeter U et al. (1996) Neuroendocrine effects of a 20-mg citalopram infusion in healthy males: a placebo-controlled evaluation of citalopram as 5-HT function probe. Neuropsychopharmacology 14:253–263

    Article  CAS  PubMed  Google Scholar 

  • Selinger-Leneman H, Genin E, Norris JM, Khlat M (2003) Does accounting for gene-environment (G×E) interaction increase the power to detect the effect of a gene in a multifactorial disease? Genet Epidemiol 24:200–207

    Article  PubMed  Google Scholar 

  • Shimizu H, Bray GA (1989) Hypothalamic monoamines measured by microdialysis in rats treated with 2-deoxy-glucose or d-fenfluramine. Physiol Behav 46:799–807

    Article  CAS  PubMed  Google Scholar 

  • Sidhu J, Priskorn M, Poulsen M, Segonzac A, Grollier G, Larsen F (1997) Steady state pharmocokinetics of the enantiomers of citalopram and its metabolites in humans. Chirality 9:686–692

    Article  CAS  PubMed  Google Scholar 

  • Smith GS, Ma Y, Dhawan V, Gunduz H, Carbon M, Kirshner M et al. (2002) Serotonin modulation of cerebral glucose metabolism measured with positron emission tomography (PET) in human subjects. Synapse 45:105–112

    Article  CAS  PubMed  Google Scholar 

  • Smith GS, Lotrich FE, Malhotra AK, Lee A, Ma Y, Kramer E (2004) The effects of serotonin transporter promoter polymorphisms on serotonin function. Neuropsychopharmacology (in press)

  • Sobczak S, Honig A, van Duinen MA, Riedel WJ (2002) Serotonergic dysregulation in bipolar disorders: a literature review of serotonergic challenge studies. Bipolar Disord 4:347–356

    Article  CAS  PubMed  Google Scholar 

  • Spigset O, Hagg S, Stegmayr B, Dahlqvist R (2000) Citalopram pharmacokinetics in patients with chronic renal failure and the effect of haemodialysis. Eur J Clin Pharmacol 56:699–703

    Google Scholar 

  • Storlien LH, Smythe GA (1992) d-Fenfluramine effects on hypothalamic monoamine activities and their hormonal correlates. Brain Res 597:60–65

    Article  CAS  PubMed  Google Scholar 

  • Streeten DH, Anderson GHJ, Dalakos TG, Seeley D, Mallov JS, Eusebio R et al (1984) Normal and abnormal function of the hypothalamic-pituitary-adrenocortical system in man. Endocr Rev 5:371–394

    CAS  PubMed  Google Scholar 

  • Syvalahti E, Eneroth P, Ross SB (1979) Acute effects of zimelidine and alaproclate, two inhibitors of serotonin uptake, on neuroendocrine function. Psychiatry Res 1:111–120

    Article  CAS  PubMed  Google Scholar 

  • Weiss D, Coccaro EF (1997) Neuroendocrine challenge studies of suicidal behavior. Psychiatr Clin N Am 20:563–579

    Google Scholar 

  • Whale R, Quested DJ, Laver D, Harrison PJ, Cowen PJ (2000) Sertonin transporter (5-HTT) promoter genotype may influence the prolactin response to clomipramine. Psychopharmacology 150:120–122

    Article  CAS  PubMed  Google Scholar 

  • Yatham LN, Steiner M (1993) Neuroendocrine probes of serotonergic function: a critical review. Life Sci 53:447–463

    Article  CAS  PubMed  Google Scholar 

  • Yukawa E (1999) Population-based investigations of drug relative clearance using nonlinear mixed-effect modelling from information generated during the routine clinical care of patients. J Clin Pharmacol Ther 24:103–113

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by NIMH grants MH65416, MH64173, MH30915, MH52247, RR00056, MH16804, HL40962, MH 49936, MH57078, MH01621, and MH46823 and NIBIBP41 EB-001975. The authors thank Margaret Kirshner for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francis E. Lotrich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lotrich, F.E., Bies, R., Muldoon, M.F. et al. Neuroendocrine response to intravenous citalopram in healthy control subjects: pharmacokinetic influences. Psychopharmacology 178, 268–275 (2005). https://doi.org/10.1007/s00213-004-2006-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-004-2006-4

Keywords

Navigation