Skip to main content
Log in

The effects of chronic nicotine on spatial learning and bromodeoxyuridine incorporation into the dentate gyrus of the rat

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Nicotine is reported to improve learning and memory in experimental animals. Improved learning and memory has also been related to increased neurogenesis in the dentate gyrus (DG) of the hippocampal formation. Surprisingly, recent studies suggest that self-administered nicotine depresses cell proliferation in the DG.

Objective

To test the hypothesis that the effects of nicotine on cell proliferation in the DG and learning and memory depend upon the nicotine dose administered.

Methods

Rats were chronically infused from subcutaneous osmotic mini pumps with nicotine (0.25 or 4 mg kg−1 day−1) or the saline vehicle for 10 days. Half the rats in each treatment group were trained to locate a hidden platform in a water maze task on days 4–7; a probe trial was performed on day 8. The remaining rats remained in their home cages. The effects of nicotine and of training in the water maze task on cell genesis in the DG were determined by measuring 5-bromo-2′-deoxyuridine (BrDU) uptake using fluorescence immunohistochemistry.

Results

Training in the water maze task increased cell proliferation in the DG. Infusions of nicotine at 4 mg kg−1 day−1, but not 0.25 mg kg−1 day−1, decreased cell proliferation in both untrained animals and animals trained in the maze and impaired spatial learning.

Conclusions

The data suggest that learning in the water maze task is impaired by higher doses of nicotine tested, and that this response may be related to reduced cell genesis in the DG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abrous DN, Adriani W, Montaron MF, Aurousseau C, Rougon G, Le Moal M, Piazza PV (2002) Nicotine self-administration impairs hippocampal plasticity. J Neurosci 22:3656–3662

    PubMed  CAS  Google Scholar 

  • Altman J (1962) Are new neurons formed in the brains of adult mammals? Science 135:1127–1128

    Article  PubMed  CAS  Google Scholar 

  • Attaway CM, Compton DM, Turner MD (1999) The effects of nicotine on learning and memory: a neuropsychological assessment in young and senescent Fischer 344 rats. Physiol Behav 67:421–431

    Article  PubMed  CAS  Google Scholar 

  • Balfour DJK, Wright AE, Benwell MEM, Birrell CE (2000) The putative role of extra-synaptic mesolimbic dopamine in the neurobiology of nicotine dependence. Behav Brain Res 113:73–83

    Article  PubMed  CAS  Google Scholar 

  • Benwell MEM, Balfour DJK (1997) Regional variation in the effects of nicotine on catecholamine overflow in rat brain. Eur J Pharmacol 325:13–20

    Article  PubMed  CAS  Google Scholar 

  • Benwell MEM, Balfour DJK, Khadra LF (1994) Studies on the influence of nicotine infusions on mesolimbic dopamine and locomotor responses to nicotine. Clin Invest 72:233–239

    Article  PubMed  CAS  Google Scholar 

  • Benwell MEM, Balfour DJK, Birrell CE (1995) Desensitization of the nicotine-induced mesolimbic dopamine responses during constant infusion with nicotine. Br J Pharmacol 114:454–460

    PubMed  CAS  Google Scholar 

  • Brown J, Cooper-Kuhn CM, Kempermann G, van Praag H, Winkler J, Gage FH, Kuhn HG (2003) Enriched environment and physical activity stimulate hippocampal but not olfactory bulb neurogenesis. Eur J Neurosci 17:2042–2046

    Article  PubMed  Google Scholar 

  • Changeux JP, Bertrand D, Corringer PJ, Dehaene S, Edelstein S, Lena C, Le Novere N, Marubio L, Picciotto M, Zoli M (1998) Brain nicotinic receptors: structure and regulation, role in learning and reinforcement. Brain Res Brain Res Rev 26:198–216

    Article  PubMed  CAS  Google Scholar 

  • Cooper-Kuhn CM, Kuhn HG (2002) Is it all DNA repair? Methodological considerations for detecting neurogenesis in the adult brain. Brain Res Dev Brain Res 134:13–21

    Article  PubMed  CAS  Google Scholar 

  • Curzon P, Brioni JD, Decker MW (1996) Effect of intraventricular injections of dihydro-beta-erythroidine (DH beta E) on spatial memory in the rat. Brain Res 714:185–191

    Article  PubMed  CAS  Google Scholar 

  • Decker MW, Majchrzak MJ, Anderson DJ (1992) Effects of nicotine on spatial memory deficits in rats with septal lesions. Brain Res 572:281–285

    Article  PubMed  CAS  Google Scholar 

  • Dobrossy MD, Drapeau E, Aurousseau C, Le Moal M, Piazza PV, Abrous DN (2003) Differential effects of learning on neurogenesis: learning increases or decreases the number of newly born cells depending on their birth date. Mol Psychiatry 8:974–982

    Article  PubMed  CAS  Google Scholar 

  • Dunnett SB, Martel FL (1990) Proactive interference effects on short-term memory in rats: I. Basic parameters and drug effects. Behav Neurosci 104:655–665

    Article  PubMed  CAS  Google Scholar 

  • Eriksson PS, Perfilieva E, Bjork-Eriksson T, Alborn AM, Nordborg C, Peterson DA, Gage FH (1998) Neurogenesis in the adult human hippocampus. Nat Med 4:1313–1317

    Article  PubMed  CAS  Google Scholar 

  • File SE, Kenny PJ, Ouagazzal AM (1998) Bimodal modulation by nicotine of anxiety in the social interaction test: role of the dorsal hippocampus. Behav Neurosci 112:1423–1429

    Article  PubMed  CAS  Google Scholar 

  • File SE, Kenny PJ, Cheeta S (2000) The role of the dorsal hippocampal serotonergic and cholinergic systems in the modulation of anxiety. Pharmacol Biochem Behav 66:65–72

    Article  PubMed  CAS  Google Scholar 

  • Gould E, McEwen BS, Tanapat P, Galea LA, Fuchs E (1997) Neurogenesis in the dentate gyrus of the adult tree shrew is regulated by psychosocial stress and NMDA receptor activation. J Neurosci 17:2492–2498

    PubMed  CAS  Google Scholar 

  • Gould E, Beylin A, Tanapat P, Reeves A, Shors TJ (1999) Learning enhances adult neurogenesis in the hippocampal formation. Nat Neurosci 2:260–265

    Article  PubMed  CAS  Google Scholar 

  • Hagan JJ, Jansen JH, Broekkamp CL (1989) Hemicholinium-3 impairs spatial learning and the deficit is reversed by cholinomimetics. Psychopharmacology 98:347–356

    Article  PubMed  CAS  Google Scholar 

  • Hahn B, Shoaib M, Stolerman IP (2002) Nicotine-induced enhancement of attention in the five-choice serial reaction time task: the influence of task demands. Psychopharmacology 162:129–137

    Article  PubMed  CAS  Google Scholar 

  • Heishman SJ (1999) Behavioral and cognitive effects of smoking: relationship to nicotine addiction. Nicotine Tob Res 1(Suppl 2):S143–S147

    Article  PubMed  Google Scholar 

  • Jacobs LF, Schenk F (2003) Unpacking the cognitive map: the parallel map theory of hippocampal function. Psychol Rev 110:285–315

    Article  PubMed  Google Scholar 

  • Levin ED (2002) Nicotinic receptor subtypes and cognitive function. J Neurobiol 53:633–640

    Article  PubMed  CAS  Google Scholar 

  • Levin ED, Rezvani AH (2000) Development of nicotinic drug therapy for cognitive disorders. Eur J Pharmacol 393:141–146

    Article  PubMed  CAS  Google Scholar 

  • Levin ED, Rezvani AH (2002) Nicotinic treatment for cognitive dysfunction. Curr Drug Targets CNS Neurol Disord 1:423–431

    Article  PubMed  CAS  Google Scholar 

  • Levin ED, Simon BB (1998) Nicotinic acetylcholine involvement in cognitive function in animals. Psychopharmacology 138:217–230

    Article  PubMed  CAS  Google Scholar 

  • Levin ED, Torry D (1996) Acute and chronic nicotine effects on working memory in aged rats. Psychopharmacology 123:88–97

    Article  PubMed  CAS  Google Scholar 

  • Madsen TM, Treschow A, Bengzon J, Bolwig TG, Lindvall O, Tingstrom A (2000) Increased neurogenesis in a model of electroconvulsive therapy. Biol Psychiatry 47:1043–1049

    Article  PubMed  CAS  Google Scholar 

  • Malberg JE, Eisch AJ, Nestler EJ, Duman RS (2000) Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci 20:9104–9110

    PubMed  CAS  Google Scholar 

  • Mechawar N, Saghatelyan A, Grailhe R, Scoriels L, Gheusi G, Gabellec MM, Lledo PM, Changeux JP (2004) Nicotinic receptors regulate the survival of newborn neurons in the adult olfactory bulb. Proc Natl Acad Sci U S A 101:9822–9826

    Article  PubMed  CAS  Google Scholar 

  • Morris R (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11:47–60

    Article  PubMed  CAS  Google Scholar 

  • Morris RGM, Garrud P, Rawlins JNP, O'Keefe J (1982) Place navigation impaired in rats with hippocampal lesions. Nature 297:681–683

    Article  PubMed  CAS  Google Scholar 

  • Picciotto MR, Zoli M (2002) Nicotinic receptors in aging and dementia. J Neurobiol 53:641–655

    Article  PubMed  CAS  Google Scholar 

  • Pidoplichko VI, DeBiasi M, Williams JT, Dani JA (1997) Nicotine activates and desensitizes midbrain dopamine neurons. Nature 390:401–404

    Article  PubMed  CAS  Google Scholar 

  • Rezvani AH, Levin ED (2001) Cognitive effects of nicotine. Biol Psychiatry 49:258–267

    Article  PubMed  CAS  Google Scholar 

  • Richards M, Jarvis MJ, Thompson N, Wadsworth ME (2003) Cigarette smoking and cognitive decline in midlife: evidence from a prospective birth cohort study. Am J Public Health 93:994–998

    PubMed  Google Scholar 

  • Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S, Weisstaub N, Lee J, Duman R, Arancio O, Belzung C, Hen R (2003) Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 301:805–809

    Article  PubMed  CAS  Google Scholar 

  • Shors TJ, Miesegaes G, Beylin A, Zhao M, Rydel T, Gould E (2001) Neurogenesis in the adult is involved in the formation of trace memories. Nature 410:372–376

    Article  PubMed  CAS  Google Scholar 

  • Singer S, Rossi S, Verzosa S, Hashim A, Lonow R, Cooper T, Sershen H, Lajtha A (2004) Nicotine-induced changes in neurotransmitter levels in brain areas associated with cognitive function. Neurochem Res 29:1779–1792

    Article  PubMed  CAS  Google Scholar 

  • Socci DJ, Sanberg PR, Arendash GW (1995) Nicotine enhances Morris water maze performance of young and aged rats. Neurobiol Aging 16:857–860

    Article  PubMed  CAS  Google Scholar 

  • Turner DM (1975) Influence of route of administration on metabolism of [14C]nicotine in four species. Xenobiotica 5:553–561

    Article  PubMed  CAS  Google Scholar 

  • van Praag H, Kempermann G, Gage FH (1999) Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci 2:266–270

    Article  PubMed  Google Scholar 

  • Warburton DM, Rusted JM (1993) Cholinergic control of cognitive resources. Neuropsychobiology 28:43–46

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was partly funded by a research grant awarded by the University of Malta.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. K. Balfour.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scerri, C., Stewart, C.A., Breen, K.C. et al. The effects of chronic nicotine on spatial learning and bromodeoxyuridine incorporation into the dentate gyrus of the rat. Psychopharmacology 184, 540–546 (2006). https://doi.org/10.1007/s00213-005-0086-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-005-0086-4

Keywords

Navigation