Skip to main content

Advertisement

Log in

Dissociating effects of cocaine and d-amphetamine on dopamine and serotonin in the perirhinal, entorhinal, and prefrontal cortex of freely moving rats

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Neuroimaging studies with humans showed widespread activation of the cortex in response to psychostimulant drugs. However, the neurochemical nature of these brain activities is not characterized.

Objective

The aim of the present study was to investigate the effects of cocaine and d-amphetamine on dopamine (DA) and serotonin (5-HT) in cortical areas of the hippocampal network in comparison to the prefrontal cortex (PFC).

Materials and methods

We conducted in vivo microdialysis experiments in behaving rats measuring DA and 5-HT in the perirhinal cortex (PRC), entorhinal cortex (EC), and PFC, after application of cocaine (0, 5, 10, 20 mg/kg; i.p.) or d-amphetamine (0, 0.5, 1.0, 2.5 mg/kg; i.p.).

Results

Cocaine and d-amphetamine dose-dependently increased DA and 5-HT levels in the PRC, EC, and PFC. A predominant DA response to d-amphetamine was only found in the PFC, but not in the PRC and EC. Cocaine increased DA and 5-HT to an equal extent in the PFC and PRC but induced a predominant 5-HT response in the EC. When comparing the neurochemical responses between the drugs at an equal level of behavioral activation, cocaine was more potent than d-amphetamine in increasing 5-HT in the PFC, while no differences were found in the PRC or EC or in the DA responses in all three cortical areas.

Conclusions

We conclude that cocaine and d-amphetamine increase DA and 5-HT levels in PRC and EC largely to the same extent as in the PFC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Barnes NM, Sharp T (1999) A review of central 5-HT receptors and their function. Neuropharmacology 39:1083–1152

    Article  Google Scholar 

  • Benveniste H, Hansen AJ (1991) Practical aspects of using microdialysis for determination of brain interstitial concentrations. In: Robinson TE, Justice JB (eds) Microdialysis in the neurosciences. Elsevier, Amsterdam, pp 81–100

    Google Scholar 

  • Berger B, Gaspar R, Verney C (1991) Dopaminergic innervation of the cerebral cortex: unexpected differences between rodents and primates. Trends Neurosci 14:21–27

    Article  PubMed  CAS  Google Scholar 

  • Boix F, Sandor P, Nogueira PJC, Huston JP, Schwarting RKW (1995) Relationship between dopamine release in nucleus accumbens and place preference induced by substance P injected into the nucleus basalis magnocellularis region. Neuroscience 64:1045–1055

    Article  PubMed  CAS  Google Scholar 

  • Breiter HC, Gollub RL, Weisskoff RM, Kennedy DN, Makris N, Derke JD, Goodman JM, Kantor HL, Gastfriend DR, Riorden JP, Mathew RT, Rosen BR, Hyman SE (1997) Acute effects of cocaine on human brain activity and emotion. Neuron 19:591–611

    Article  PubMed  CAS  Google Scholar 

  • Burwell RD, Amaral DG (1998) Cortical afferents of the perirhinal, postrhinal, and entorhinal cortices of the rat. J Comp Neurol 398:179–205

    Article  PubMed  CAS  Google Scholar 

  • Carboni E, Silvagni A, Vacca C, Di Chiara G (2006) Cumulative effect of norepinephrine and dopamine carrier blockade on extracellular dopamine increase in the nucleus accumbens shell, bed nucleus of stria terminalis and prefrontal cortex. J Neurochem 96:473–481

    Article  PubMed  CAS  Google Scholar 

  • Carey RJ, Damianopoulos EN (1994) Conditioned cocaine induced hyperactivity: an association with increased medial prefrontal cortex serotonin. Behav Brain Res 62:177–185

    Article  PubMed  CAS  Google Scholar 

  • Cervo L, Mukherjee S, Bertaglia A, Samanin R (1997) Protein kinases A and C are involved in the mechanisms underlying consolidation of cocaine place conditioning. Brain Res 775:30–36

    Article  PubMed  CAS  Google Scholar 

  • Cestari V, Mele A, Oliverio A, Castellano C (1996) Amygdala lesions block the effect of cocaine on memory in mice. Brain Res 713:286–289

    Article  PubMed  CAS  Google Scholar 

  • Chen NH, Reith MEA (1994) Autoregulation and monoamine interactions in the ventral tegmental area in the absence and presence of cocaine: a microdialysis study in freely moving rats. J Pharmacol Exp Ther 271:1597–1610

    PubMed  CAS  Google Scholar 

  • Dalley JW, Theobald DE, Eagle DM, Passetti F, Robbins TW (2002) Deficits in impulse control associated with tonically-elevated serotonergic function in rat prefrontal cortex. Neuropsychopharmacology 26:716–728

    Article  PubMed  CAS  Google Scholar 

  • De Curtis M, Paré D (2004) The rhinal cortices: a wall of inhibition between the neocortex and the hippocampus. Prog Neurobiol 74:101–110

    Article  PubMed  Google Scholar 

  • Delatour D, Witter MP (2002) Projections from the parahippocampal region to the prefrontal cortex in the rat: evidence of multiple pathways. Eur J Neurosci 15:1400–1407

    Article  PubMed  CAS  Google Scholar 

  • Di Chiara G, Bassareo V, Fenu S, De Luca MA, Spina L, Cadoni C, Acquas E, Carboni E, Valentini V, Lecca D (2004) Dopamine and drug addiction: the nucleus accumbens shell connection. Neuropharmacology 47:227–241

    Article  PubMed  CAS  Google Scholar 

  • Durstewitz D, Kelc M, Güntürkün O (1999) A neurocomputational theory of the dopaminergic modulation of working memory functions. J Neurosci 19:2807–2822

    PubMed  CAS  Google Scholar 

  • Eichenbaum H (2000) A cortical–hippocampal system for declarative memory. Nat Rev Neurosci 1:41–50

    Article  PubMed  CAS  Google Scholar 

  • Everitt BJ, Robbins TW (2005) Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat Neurosci 8:1481–1489

    Article  PubMed  CAS  Google Scholar 

  • Filip M, Cunningham KA (2003) Hyperlocomotive and discriminative stimulus effects of cocaine are under the control of serotonin2C (5-HT2C) receptors in rat prefrontal cortex. J Pharmacol Exp Ther 306:734–743

    Article  PubMed  CAS  Google Scholar 

  • Freed C, Revay R, Vaughan RA, Kriek E, Grant S, Uhl GR, Kuhar MJ (1995) Dopamine transporter immunoreactivity in rat brain. J Comp Neurol 359:340–349

    Article  PubMed  CAS  Google Scholar 

  • Galani R, Weiss I, Cassel J-C, Kelche C (1998) Spatial memory, habituation, and reactions to spatial and nonspatial changes in rats with selective lesions of the hippocampus, the entorhinal cortex or the subiculum. Behav Brain Res 96:1–12

    Article  PubMed  CAS  Google Scholar 

  • Gawin FH, Ellinwood EH (1989) Cocaine dependence. Annu Rev Med 40:149–161

    Article  PubMed  CAS  Google Scholar 

  • Goldman-Rakic PS, Muly EC, Williams GV (2000) D1 receptors in prefrontal cells and circuits. Brain Res Rev 31:295–301

    Article  PubMed  CAS  Google Scholar 

  • Good M, Honey RC (1997) Dissociable effects of selective lesions to hippocampal subsystems on exploratory behavior, contextual learning, and spatial learning. Behav Neurosci 111:487–493

    Article  PubMed  CAS  Google Scholar 

  • Gorelick DA, Gardner EL, Xi ZX (2004) Agents in development for the management of cocaine abuse. Drugs 64:1547–1573

    Article  PubMed  CAS  Google Scholar 

  • Goussakov I, Chartoff EH, Tsvetkov E, Gerety LP, Meloni EG, Carlezon WA Jr, Bolshakov VY (2006) LTP in the lateral amygdala during cocaine withdrawal. Eur J Neurosci 23:239–250

    Article  PubMed  Google Scholar 

  • Hannesson DK, Howland JG, Phillips AG (2004) Interaction between perirhinal and medial prefrontal cortex is required for temporal order but not recognition memory for objects in rats. J Neurosci 24:4596–4604

    Article  PubMed  CAS  Google Scholar 

  • Hedou G, Homberg J, Martin S, Wirth K, Feldon J, Heidbreder CA (2000) Effect of amphetamine on extracellular acetylcholine and monoamine level in subterritories of the rat medial prefrontal cortex. Eur J Pharmacol 390:127–136

    Article  PubMed  CAS  Google Scholar 

  • Hemby SE, Jones GH, Neill DB, Justice JB (1992) 6-Hydroxydopamine lesions of the medial prefrontal cortex fail to influence cocaine-induced place conditioning. Behav Brain Res 49:225–230

    Article  PubMed  CAS  Google Scholar 

  • Heyne A, May T, Goll P, Wolffgramm J (2000) Persisting consequences of drug intake: towards a memory of addiction. J Neural Transm 107:613–638

    Article  PubMed  CAS  Google Scholar 

  • Hsu EH, Schroeder JP, Packard MG (2002) The amygdala mediates memory consolidation for an amphetamine conditioned place preference. Behav Brain Res 129:93–100

    Article  PubMed  CAS  Google Scholar 

  • Huang Y, Wang S, Chiou L, Gean P (2003) Mediation of amphetamine-induced long-term depression of synaptic transmission by CB1 cannabinoid receptors in the rat amygdala. J Neurosci 23:10311–10320

    PubMed  CAS  Google Scholar 

  • Hyman SE (2005) Addiction: a disease of learning and memory. Am J Psychiatry 162:1414–1422

    Article  PubMed  Google Scholar 

  • Ikemoto S (2002) Ventral striatal anatomy of locomotor activity induced by cocaine, d-amphetamine, dopamine and D1/D2 agonists. Neuroscience 113:939–955

    Article  PubMed  CAS  Google Scholar 

  • Izquierdo LA, Barros DM, Vianna MRM, Coitinho A, deDavid e Silva T, Choi H, Moletta B, Medina JH, Izquierdo I (2002) Molecular pharmacological dissection of short- and long-term memory. Cell Mol Neurobiol 22:269–287

    Article  PubMed  CAS  Google Scholar 

  • Jentsch JD, Taylor JR (1999) Impulsivity resulting from frontostriatal dysfunction in drug abuse: implications for the control of behavior by reward-related stimuli. Psychopharmacology 146:373–390

    Article  PubMed  CAS  Google Scholar 

  • Jocham G, Lezoch K, Müller CP, Kart-Teke E, Huston JP, de Souza Silva MA (2006) Neurokinin3 receptor antagonism attenuates cocaine’s behavioral activating effects yet potentiates its dopamine-enhancing action in the nucleus accumbens core. Eur J Neurosci 24:1721–1732

    Article  PubMed  Google Scholar 

  • Johanson C, Fischman MW (1989) The pharmacology of cocaine related to its abuse. Pharmacol Rev 41:3–52

    PubMed  CAS  Google Scholar 

  • Jones S, Bonci A (2005) Synaptic plasticity and drug addiction. Curr Opin Pharmacol 5:20–25

    Article  PubMed  CAS  Google Scholar 

  • Kalivas PW, Volkow ND (2005) The neural basis of addiction: a pathology of motivation and choice. Am J Psychiatry 162:1403–1413

    Article  PubMed  Google Scholar 

  • Karreman M, Moghaddam B (1996) The prefrontal cortex regulates the basal release of dopamine in the limbic striatum: an effect mediated by ventral tegmental area. J Neurochem 66:589–598

    Article  PubMed  CAS  Google Scholar 

  • Kelly AE (2004) Memory and addiction: shared neural circuitry and molecular mechanisms. Neuron 44:161–179

    Article  Google Scholar 

  • Koob GF, Sanna PP, Bloom FE (1998) Neuroscience of addiction. Neuron 21:467–476

    Article  PubMed  CAS  Google Scholar 

  • Kramer JC, Fischman VS, Littlefield DC (1967) Amphetamine abuse. Pattern and effects of high doses taken intravenously. JAMA 201:305–309

    Article  PubMed  CAS  Google Scholar 

  • Krayniak PF, Meibach RC, Siegel A (1981) A projection from the entorhinal cortex to the nucleus accumbens in the rat. Brain Res 209:427–431

    Article  PubMed  CAS  Google Scholar 

  • Kuroki T, Ichikawa J, Dai J, Meltzer HY (1996) R(+)-8-OH-DPAT, a 5-HT1A receptor agonist, inhibits amphetamine-induced serotonin and dopamine release in rat medial prefrontal cortex. Brain Res 743:357–361

    Article  PubMed  CAS  Google Scholar 

  • Lee JLC, Di Ciano P, Thomas KL, Everitt BJ (2005) Disrupting reconsolidation of drug memories reduces cocaine-seeking behavior. Neuron 47:795–801

    Article  PubMed  CAS  Google Scholar 

  • Lisman JE, Grace AA (2005) The hippocampal–VTA loop: controlling the entry of information into long-term memory. Neuron 46:703–713

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Richmond BJ, Murray EA, Saunders RC, Steenrod S, Stubblefield BK, Montague DM, Ginns EI (2004) DNA targeting of rhinal cortex D2 receptor protein reversibly blocks learning of cues that predict reward. Proc Natl Acad Sci USA 101:12336–12341

    Article  PubMed  CAS  Google Scholar 

  • Louilot A, Choulli MK (1997) Asymmetrical increases in dopamine turn-over in the nucleus accumbens and lack of changes in locomotor responses following unilateral dopaminergic depletions in the entorhinal cortex. Brain Res 778:150–157

    Article  PubMed  CAS  Google Scholar 

  • Mazei MS, Pluto CP, Kirkbridge D, Pehek EA (2002) Effects of catecholamine uptake blockers in the caudate-putamen and subregions of the medial prefrontal cortex of the rat. Brain Res 936:58–67

    Article  PubMed  CAS  Google Scholar 

  • Millan MJ, Gobert A, Joly F, Bervoets K, Rivet J-M, Newman-Tancredi A, Audinot V, Maurel S (1999) Contrasting mechanisms of action and sensitivity to antipsychotics of phencyclidine versus amphetamine: importance of nucleus accumbens 5-HT2A sites for PCP-induced locomotion in the rat. Eur J Neurosci 11:4419–4432

    Article  PubMed  CAS  Google Scholar 

  • Miller CA, Marshall JF (2005) Molecular substrates for retrieval and reconsolidation of cocaine-associated contextual memory. Neuron 47:873–884

    Article  PubMed  CAS  Google Scholar 

  • Mitchell SN, Yee BK, Feldon J, Gray JA, Rawlins JNP (2000) Activation of the retrohippocampal region in the rat causes dopamine release in the nucleus accumbens: disruption by fornix section. Eur J Pharmacol 407:131–138

    Article  PubMed  CAS  Google Scholar 

  • Mogenson GJ, Jones DL, Yim CY (1980) From motivation to action: functional interface between the limbic system and the motor system. Prog Neurobiol 14:69–97

    Article  PubMed  CAS  Google Scholar 

  • Müller CP, Huston JP (2006) Determining the region-specific contributions of 5-HT receptors to the psychostimulant effects of cocaine. Trends Pharmacol Sci 27:105–112

    Article  PubMed  CAS  Google Scholar 

  • Müller CP, Huston JP (2007) Dopamine activity in the occipital and temporal cortices of rats: dissociating effects of sensory but not pharmacological stimulation. Synapse 61:254–258

    Article  PubMed  CAS  Google Scholar 

  • Müller CP, Carey RJ, De Souza Silva MA, Jocham G, Huston JP (2002) Cocaine increases serotonergic activity in the hippocampus and nucleus accumbens in vivo: 5-HT1A-receptor antagonism blocks behavioral but potentiates serotonergic activation. Synapse 45:67–77

    Article  PubMed  CAS  Google Scholar 

  • Müller CP, Thönnessen H, Barros M, Tomaz C, Carey RJ, Huston JP (2004a) Hippocampus 5-HT1A-receptors attenuate cocaine-induced hyperlocomotion and the increase in hippocampal but not nucleus accumbens 5-HT. Hippocampus 14:710–721

    Article  PubMed  CAS  Google Scholar 

  • Müller CP, Thönnessen H, De Souza Silva MA, Fink H, Bert B, Carey RJ, Huston JP (2004b) Nucleus accumbens serotonin1A receptors control cocaine-induced hyperactivity but not local serotonin increase: an in vivo microdialysis study. Neuropharmacology 47:205–215

    Article  PubMed  CAS  Google Scholar 

  • Müller CP, De Souza Silva MA, Huston JP (2007) Double dissociating effects of sensory stimulation and cocaine on serotonin activity in the occipital and temporal cortex. Neuropharmacology 52:854–862

    Article  PubMed  CAS  Google Scholar 

  • Naber PE, Witter MP, Lopes da Silva FH (1998) Networks of the hippocampal memory system of the rat. Ann N Y Acad Sci 911:392–403

    Article  Google Scholar 

  • Nestler EJ (2002) Common molecular and cellular substrates of addiction and memory. Neurobiol Learn Mem 78:637–647

    Article  PubMed  CAS  Google Scholar 

  • Nishioku T, Shimazoe T, Yamamoto Y, Nakanishi H, Watanabe S (1999) Expression of long-term potentiation of the striatum in methamphetamine-sensitized rats. Neurosci Lett 268:81–84

    Article  PubMed  CAS  Google Scholar 

  • Oades RD, Halliday GM (1987) Ventral tegmental (A10) system: neurobiology. 1. Anatomy and connectivity. Brain Res Rev 12:117–165

    Article  Google Scholar 

  • Parron C, Save E (2004) Comparison of the effects of entorhinal and retrosplenial cortical lesions on habituation, reaction to spatial and non-spatial changes during object exploration in the rat. Neurobiol Learn Mem 82:1–11

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (1986) The rat brain in stereotactic coordinates. Academic, New York

    Google Scholar 

  • Phillips RG, LeDoux JE (1995) Lesions of the fornix but not the entorhinal or perirhinal cortex interfere with contextual fear conditioning. J Neurosci 15:5308–5315

    PubMed  CAS  Google Scholar 

  • Puglisi-Allegra S, Cestari V, Cabib S, Castellano C (1994) Strain-dependent effects of post-training cocaine or nomifensine on memory storage involve D1 and D2 dopamine receptors. Psychopharmacology 115:157–162

    Article  PubMed  CAS  Google Scholar 

  • Ritz MC, Kuhar MJ (1989) Relationship between self-administration of amphetamine and monoamine receptors in brain: comparison with cocaine. J Pharmacol Exp Ther 248:1010–1017

    PubMed  CAS  Google Scholar 

  • Robinson TE, Kolb B (2004) Structural plasticity associated with exposure to drugs of abuse. Neuropharmacology 47:33–46

    Article  PubMed  CAS  Google Scholar 

  • Schmitz D, Gloveli T, Empson RM, Draguhn A, Heinemann U (1998) Serotonin reduces synaptic excitation in the superficial medial entorhinal cortex of the rat via a presynaptic mechanism. J Physiol 508:119–129

    Article  PubMed  CAS  Google Scholar 

  • Schmitz D, Gloveli T, Empson RM, Heinemann U (1999) Potent depression of stimulus evoked field potential responses in the medial entorhinal cortex by serotonin. Br J Pharmacol 128:248–254

    Article  PubMed  CAS  Google Scholar 

  • Sewards TV, Sewards MA (2003) Input and output stations of the entorhinal cortex: superficial vs. deep layers of lateral vs. medial divisions? Brain Res Rev 42:243–251

    Article  PubMed  Google Scholar 

  • Steinbusch HWM (1981) Distribution of serotonin-immunoreactivity in the central nervous system of the rat-cell bodies and terminals. Neuroscience 6:557–618

    Article  PubMed  CAS  Google Scholar 

  • Steketee JD (2003) Neurotransmitter systems of the medial prefrontal cortex: potential role in sensitization to psychostimulants. Brain Res Rev 41:203–228

    Article  PubMed  CAS  Google Scholar 

  • Stenkamp K, Heinemann U, Schmitz D (1998) Dopamine suppresses stimulus-induced field potentials in layer III of rat medial entorhinal cortex. Neurosci Lett 255:119–121

    Article  PubMed  CAS  Google Scholar 

  • Sumiyoshi T, Tsunoda M, Uehara T, Tanaka K, Itoh H, Sumiyoshi C, Kurachi M (2004) Enhanced locomotor activity in rats with excitotoxic lesions of the entorhinal cortex, a neurodevelopmental animal model of schizophrenia: behavioral and in vivo microdialysis studies. Neurosci Lett 364:124–129

    Article  PubMed  CAS  Google Scholar 

  • Sur C, Betz H, Schloss P (1996) Immunocytochemical detection of the serotonin transporter in rat brain. Neuroscience 73:217–231

    Article  PubMed  CAS  Google Scholar 

  • Tanda G, Pontieri FE, Frau R, Di Chiara G (1997) Contribution of blockade of the noradrenaline carrier to the increase of extracellular dopamine in the rat prefrontal cortex by amphetamine and cocaine. Eur J Neurosci 9:2077–2085

    Article  PubMed  CAS  Google Scholar 

  • Thierry A-M, Gioanni Y, Degenetais E, Glowinski J (2000) Hippocampo–prefrontal cortex pathway: anatomical and electrophysiological characteristics. Hippocampus 10:411–419

    Article  PubMed  CAS  Google Scholar 

  • Thompson AM, Gosnell BA, Wagner JJ (2002) Enhancement of long-term potentiation in the rat hippocampus following cocaine exposure. Neuropharmacology 42:1039–1042

    Article  PubMed  CAS  Google Scholar 

  • Thompson AM, Swant J, Wagner JJ (2005) Cocaine-induced modulation of long-term potentiation in the CA1 region of rat hippocampus. Neuropharmacology 49:185–194

    Article  PubMed  CAS  Google Scholar 

  • Todd CL, Grace AA (1999) Modulation of ventral tegmental area dopamine cell activity by the ventral subiculum and entorhinal cortex. Ann N Y Acad Sci 887:688–690

    Article  Google Scholar 

  • Valentini V, Frau R, Di Chiara G (2004) Noradrenaline transporter blockers raise extracellular dopamine in medial prefrontal cortex but not parietal and occipital cortex: differences with mianserin and clozapine. J Neurochem 88:917–927

    Article  PubMed  CAS  Google Scholar 

  • Volkow ND, Fowler JS, Wang G, Goldstein RZ (2002) Role of dopamine, the frontal cortex and memory circuits in drug addiction: insight from imaging studies. Neurobiol Learn Mem 78:610–624

    Article  PubMed  CAS  Google Scholar 

  • Wiltgen BJ, Brown RAM, Talton LE, Silva AJ (2004) New circuits for old memories: the role of neocortex in consolidation. Neuron 44:101–108

    Article  PubMed  CAS  Google Scholar 

  • Winstanley CA, Theobald DEH, Dalley JW, Cardinal RN, Robbins TW (2006) Double dissociation between serotonergic and dopaminergic modulation of medial prefrontal and orbitofrontal cortex during a test of impulsive choice. Cereb Cortex 16:106–144

    Article  PubMed  Google Scholar 

  • Witter MP, Naber PA, van Haeften T, Machielsen WCM, Rombouts SARB, Barkhof F, Scheltens P, Lopes da Silva FH (2000) Cortico–hippocampal communication by way of parallel parahippocampal–subicular pathways. Hippocampus 10:398–410

    Article  PubMed  CAS  Google Scholar 

  • Wolf ME, Sun X, Mangiavacchi S, Chao SZ (2004) Psychomotor stimulants and neuronal plasticity. Neuropharmacology 47:61–79

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto BK, Novotney S (1998) Regulation of extracellular dopamine by the norepinephrine transporter. J Neurochem 71:274–280

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grant HU 306/23-5 from the Deutsche Forschungsgemeinschaft, a NIDA grant DA R01 DA 05366-17, and a VA Merit Review grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. P. Müller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pum, M., Carey, R.J., Huston, J.P. et al. Dissociating effects of cocaine and d-amphetamine on dopamine and serotonin in the perirhinal, entorhinal, and prefrontal cortex of freely moving rats. Psychopharmacology 193, 375–390 (2007). https://doi.org/10.1007/s00213-007-0791-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-007-0791-2

Keywords

Navigation