Skip to main content

Advertisement

Log in

Plasticity in corticomotor control of the human tongue musculature induced by tongue-task training

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Transcranial magnetic stimulation (TMS) has been used to assess characteristics of the corticomotor control of the jaw muscles, but less is known about the cortical control of the human tongue and its modification by training. The aim of the present study was to determine the effect of training humans in a novel tongue-protrusion task for 1 week on corticomotor excitability as assessed by changes in electromyographic activity elicited in the tongue musculature by TMS, and in the tongue cortical motor map revealed by TMS. Eleven healthy subjects participated. Stimulus–response curves were generated from the motor evoked potentials (MEPs) recorded in the tongue musculature and, from the first dorsal interosseos (FDI) muscle as a control, at three time periods: at baseline, immediately after the 1-week training period, and at 2-weeks follow-up. In addition, the corticomotor representations of the tongue and FDI muscles were mapped on a 1×1 cm scalp grid. The tongue-training task required each subject to protrude the tongue onto a force transducer placed in front of the subject, and consisted of a relax–protrude–hold–relax cycle lasting 12.5 s with 1 N as the target at the hold phase. The subjects repeated this task for 60 min every day for 1 week. All subjects reported moderate levels of fatigue in the tongue during the first training day; however, these subjective reports decreased during the week (ANOVA P<0.001), and the subjects showed a progressive increase in their ability to perform the task successfully (P<0.001). The threshold for evoking MEPs by TMS in the tongue musculature was significantly decreased after the last training day compared with baseline and the 2-weeks follow-up (P<0.001). The amplitude of the MEPs in the tongue musculature was significantly increased at higher intensities of TMS after the last training day but returned to baseline values at the 2-weeks follow-up (P=0.005). No significant effect of the training on MEPs in the FDI was observed (P=0.493). Analysis of the corticomotor topographic maps revealed a significant (P<0.05) increase in excitability and, hence, the cortical area from which TMS could evoke MEPs in the tongue, although the center of gravity representation for the tongue or FDI muscles remained stable. The present findings suggest that a specific and reversible plasticity of the corticomotor excitability related to tongue muscle control can be induced when humans learn to perform successfully a novel tongue task.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2A,B.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  • Abbruzzese G, Trompetto C (2002) Clinical and research methods for evaluating cortical excitability. J Clin Neurophysiol 19:307–321

    Google Scholar 

  • Benecke R, Meyer BU, Schonle P, Conrad B (1988) Transcranial magnetic stimulation of the human brain: responses in muscles supplied by cranial nerves. Exp Brain Res 71:623–632

    CAS  PubMed  Google Scholar 

  • Blumen MB, Perez De La Sota A, Quera-Salva MA, Frachet B, Chabolle F, Lofaso F (2002) Genioglossal electromyogram during maintained contraction in normal humans. Eur J Appl Physiol 88:170–177

    Article  PubMed  Google Scholar 

  • Buonomano DV, Merzenich MM (1998) Cortical plasticity: from synapses to maps. Annu Rev Neurosci 21:149–186

    CAS  PubMed  Google Scholar 

  • Byl NN, Merzenich MM, Jenkins WM (1996) A primate genesis model of focal dystonia and repetitive strain injury: I. Learning-induced dedifferentiation of the representation of the hand in the primary somatosensory cortex in adult monkeys. Neurology 47:508–520

    CAS  PubMed  Google Scholar 

  • Chen R, Cohen LG, Hallett M (2002) Nervous system reorganization following injury. Neuroscience 111:761–773

    Article  CAS  PubMed  Google Scholar 

  • Clark RW, Luschei ES (1974) Short latency jaw movement produced by low intensity intracortical microstimulation of the precentral face area in monkeys. Brain Res 70:144–147

    Article  CAS  PubMed  Google Scholar 

  • Classen J, Liepert J, Wise SP, Hallett M, Cohen LG (1998) Rapid plasticity of human cortical movement representation induced by practice. J Neurophysiol 79:1117–1123

    CAS  PubMed  Google Scholar 

  • Corfield DR, Murphy K, Josephs O, Fink GR, Frackowiak RSJ, Guz A, Adams L, Turner R (1999) Cortical and subcortical control of tongue movement in humans: a functional neuroimaging study using fMRI. J Appl Physiol 86:1468–1477

    CAS  PubMed  Google Scholar 

  • Cruccu G, Berardelli A, Inghilleri M, Manfredi M(1989) Functional organization of the trigeminal motor system in man. Brain 112:1333–1350

    PubMed  Google Scholar 

  • Devanne H, Lavoie BA, Capaday C (1997) Input-output properties and gain changes in the human corticospinal pathway. Exp Brain Res 114:329–338

    CAS  PubMed  Google Scholar 

  • Donoghue JP (1997) Limits of reorganization in cortical circuits. Cereb Cortex 7:97–99

    Article  CAS  PubMed  Google Scholar 

  • Dubner R, Sessle BJ, Storey AT (1978) The neural basis of oral and facial function. New York, Plenum Press

  • Elbert T, Pantev C, Wienbruch C, Rockstroh B, Taub E (1995) Increased cortical representation of the fingers of the left hand in string players. Science 270:305–307

    CAS  PubMed  Google Scholar 

  • Fadiga L, Craighero L, Buccino G, Rizzolatti G (2002) Speech listening specifically modulates the excitability of tongue muscles: a TMS study. Eur J Neurosci 15:399–402

    Article  PubMed  Google Scholar 

  • Gooden BR, Ridding MC, Miles TS, Nordstrom MA, Thompson PD (1999) Bilateral cortical control of the human anterior digastric muscles. Exp Brain Res 129:582–591

    CAS  PubMed  Google Scholar 

  • Grafton ST, Mazziotta JC, Presty S, Friston KJ, Frackowiak RS, Phelps ME (1992) Functional anatomy of human procedural learning determined with regional cerebral blood flow and PET. J Neurosci 12:2542–2548

    CAS  PubMed  Google Scholar 

  • Grafton ST, Hazeltine E, Ivry RB (2002) Motor sequence learning with the nondominant left hand. A PET functional imaging study. Exp Brain Res 146:369–378

    Article  PubMed  Google Scholar 

  • Hamdy S, Aziz Q, Rothwell JC, Singh KD, Barlow J, Hughes DG, Tallis RC, Thompson DG (1996) The cortical topography of human swallowing musculature in health and disease. Nat Med 2:1217–1224

    CAS  PubMed  Google Scholar 

  • Huang CS, Sirisko M, Hiraba H, Murray GM, Sessle BJ (1988) Organization of the primate face motor cortex as revealed by intracortical microstimulation and electrophysiological identification of afferent inputs and corticobulbar projections. J Neurophysiol 59:796–818

    CAS  PubMed  Google Scholar 

  • Jenkins IH, Brooks DJ, Nixon PD, Frackowiak RS, Passingham RE (1994) Motor sequence learning: a study with positron emission tomography. J Neurosci 14:3775–3790

    CAS  PubMed  Google Scholar 

  • Karni A, Jezzard P, Adams MM, Turner R, Ungerleider LG (1995) Functional MRI evidence for adult motor cortex plasticity during skill learning. Science 377:155–158

    CAS  Google Scholar 

  • Katayama T, Aizawa H, Kuroda K, Suzuki Y, Kikuchi K, Kimura T, Hashimoto K, Yahara O (2001) Cortical silent period in the tongue induced by transcranial magnetic stimulation. J Neurol Sci 193:37–41

    Article  CAS  PubMed  Google Scholar 

  • Keller A, Weintraub ND, Miyashita E (1996) Tactile experience determines the organization of movement representations in rat motor cortex. Neuroreport 7:2373–2378

    CAS  PubMed  Google Scholar 

  • Kubota K (1976) Motoneurone mechanisms: suprasegmental controls. In: Sessle BJ, Hannam AG (eds) Mastication and swallowing: biological and clinical correlates. University of Toronto Press, Toronto, pp 61–75

  • Kwan HC, Mackay WA, Murphy JT, Wong YC (1978) An intracortical microstimulation study of output organization in precentral cortex of awake primates. J Physiol (Paris) 74:231–233

    Google Scholar 

  • Larson CR, Byrd KE, Garthwaite CR, Luschei ES (1980) Alterations in the pattern of mastication after ablations of the lateral precentral cortex in rhesus macaques. Exp Neurol 70:638–651

    CAS  PubMed  Google Scholar 

  • Lowe AA (1981) The neural regulation of tongue movements. Prog Neurobiol 295–344

  • Lund JP (1991) Mastication and its control by the brain stem. Crit Rev Oral Biol Med 2:33–64

    CAS  PubMed  Google Scholar 

  • Luschei ES, Goodwin GM (1975) Role of monkey precentral cortex in control of voluntary jaw movements. J Neurophysiol 38:146–157

    CAS  PubMed  Google Scholar 

  • Macaluso GM, Pavesi G, Bonanini M, Manicia D, Gennari PU (1990) Motor-evoked potentials in masseter muscle by electrical and magnetic stimulation in intact alert man. Arch Oral Biol 35:623–628

    CAS  PubMed  Google Scholar 

  • Martin RE, Sessle BJ (1993) The role of the cerebral cortex in swallowing. Dysphagia 8:195–202

    CAS  PubMed  Google Scholar 

  • Martin R, Murray GM, Kemppainen P, Masuda Y, Sessle BJ (1997) Functional properties of neurons in the primate tongue primary motor cortex during swallowing. J Neurophysiol 78:1516–1530

    CAS  PubMed  Google Scholar 

  • Martin RE, Kemppainen P, Masuda Y, Yao DY, Murray GM, Sessle BJ (1999) Features of cortically evoked swallowing in the awake primate (Macaca fascicularis). J Neurophysiol 82:1529–1541

    CAS  PubMed  Google Scholar 

  • Martin RE, Goodyear BG, Gati JS, Menon RS (2001) Cerebral cortical representation of automatic and volitional swallowing in humans. J Neurophysiol 85:938–950

    CAS  PubMed  Google Scholar 

  • McKay DR, Ridding MC, Thompson PD, Miles TS (2002) Induction of persistent changes in the organisation of the human motor cortex. Exp Brain Res 143:342–349

    Article  PubMed  Google Scholar 

  • McMillan AS, Watson C, Walshaw D (1998a) Improved reproducibility of magnetic stimulation-evoked motor potentials in the human masseter by a new method for locating stimulation sites on the scalp. Arch Oral Biol 43:665–668

    Article  CAS  PubMed  Google Scholar 

  • McMillan AS, Watson C, Walshaw D (1998b) Transcranial magnetic-stimulation mapping of the cortical topography of the human masseter muscle. Arch Oral Biol 43:925–931

    Article  CAS  PubMed  Google Scholar 

  • McMillan AS, Graven-Nielsen T, Romaniello A, Svensson P (2001) Motor potentials evoked by transcranial magnetic stimulation during static and dynamic masseter muscle contraction. Arch Oral Biol 46:381–386

    Article  CAS  PubMed  Google Scholar 

  • Meyer B-U, Liebsch R, Röricht S (1997) Tongue motor responses following transcranial magnetic stimulation of the motor cortex and proximal hypoglossal nerve in man. Electroencephalogr Clin Neurophysiol 105:15–23

    Article  CAS  PubMed  Google Scholar 

  • Muellbacher W, Mathis J, Hess CW (1994) Electrophysiological assessment of central and peripheral motor routes to the lingual muscles. J Neurol Neurosurg Psychiatry 57:309–315

    CAS  PubMed  Google Scholar 

  • Muellbacher W, Artner C, Mamoli B (1998) Motor evoked potentials in unilateral lingual paralysis after monohemispheric ischaemia. J Neurol Neurosurg Psychiatry 65:755–761

    CAS  PubMed  Google Scholar 

  • Muellbacher W, Boroojerdi B, Ziemann U, Hallet M (2001) Analogous corticocortical inhibition and facilitation in ipsilateral and contralateral human motor cortex representations of the tongue. J Clin Neurophysiol 18:550–558

    Google Scholar 

  • Murray GM, Sessle BJ (1992a) Functional properties of single neurons in the face primary motor cortex of the primate. I. Input and output features of tongue motor cortex. J Neurophysiol 67:747–758

    CAS  PubMed  Google Scholar 

  • Murray GM, Sessle BJ (1992b) Functional properties of single neurons in the face primary motor cortex of the primate. II. Relations with trained orofacial motor behavior. J Neurophysiol 67:759–774

    CAS  PubMed  Google Scholar 

  • Murray GM, Sessle BJ (1992c) Functional properties of single neurons in the face primary motor cortex of the primate. III. Relations with different directions of trained tongue protrusion. J Neurophysiol 67:775–785

    CAS  PubMed  Google Scholar 

  • Murray GM, Lin L-D, Moustafa EM, Sessle BJ (1991) Effects of reversible inactivation by cooling of the primate face motor cortex on the performance of a trained tongue-protrusion task and a trained biting task. J Neurophysiol 65:511–530

    Google Scholar 

  • Narita N, Yamamura K, Yao D, Martin RE, Masuda Y, Sessle BJ (2002) Effects on mastication of reversible bilateral inactivation of the lateral pericentral cortex in the monkey (Macaca fascicularis). Arch Oral Biol 47:673–688

    Article  PubMed  Google Scholar 

  • Nordstrom MA, Miles TS, Gooden BR, Butler SL, Ridding MC, Thompson PD (1999) Motor cortical control of human masticatory muscles. Prog Brain Res 123:203–214

    CAS  PubMed  Google Scholar 

  • Nudo RJ, Jenkins WM, Merzenich MM (1990) Repetitive microstimulation alters the cortical representation of movements in adult rats. Somatosens Motor Res 7:463–483

    CAS  Google Scholar 

  • Nudo RJ, Milliken GW, Jenkins WM, Merzenich MM (1996) Use-dependent alterations of movement representations in primary motor cortex of adult squirrel monkeys. J Neurosci 16:785–807

    CAS  PubMed  Google Scholar 

  • Pascual-Leone A, Grafman J, Hallett M (1994) Modulation of cortical motor output maps during development of implicit and explicit knowledge. Science 263:1287–1289

    CAS  PubMed  Google Scholar 

  • Pearce AJ, Thickbroom GW, Byrnes ML, Mastaglia FL (2000) Functional reorganisation of the corticomotor projection to the hand in skilled racquet players. Exp Brain Res 130:238–243

    Article  CAS  PubMed  Google Scholar 

  • Remple MS, Bruneau RM, Van den Berg PM, Goertzen C, Kleim JA (2001) Sensitivity of cortical movement representations to motor experience: evidence that skill learning but not strength training induces cortical reorganization. Behav Brain Res 123:133–141

    Article  CAS  PubMed  Google Scholar 

  • Ridding MC, Rothwell JC (1997) Stimulus/response curves as a method of measuring motor cortical excitability in man. Electroencephalogr Clin Neurophysiol 105:340–344

    CAS  PubMed  Google Scholar 

  • Ridding MC, Brouwer B, Miles TS, Pitcher JB, Thompson PD (2000) Changes in muscle responses to stimulation of the motor cortex induced by peripheral nerve stimulation in human subjects. Exp Brain Res 131:135–143

    Article  CAS  PubMed  Google Scholar 

  • Ridding MC, McKay DR, Thompson PD, Miles TS (2001) Changes in corticomotor representations induced by prolonged peripheral nerve stimulations in humans. Clin Neurophysiol 112:1461–1469

    CAS  PubMed  Google Scholar 

  • Rodel RM, Laskawi R, Markus H (2003) Tongue representation in the lateral cortical motor region of the human brain as assessed by transcranial magnetic stimulation. Ann Otol Rhinol Laryngol 112:71–76

    PubMed  Google Scholar 

  • Romaniello A, Cruccu G, McMillan AS, Arendt-Nielsen L, Svensson P (2000) Effect of experimental pain from trigeminal muscle and skin on motor cortex excitability. Brain Res 882:120–127

    Article  CAS  PubMed  Google Scholar 

  • Rothwell JC (1997) Techniques and mechanisms of action of transcranial stimulation of the human motor cortex. J Neurosci Methods 74:113–122

    CAS  PubMed  Google Scholar 

  • Sanes JN, Donoghue JP (2000) Plasticity and primary motor cortex. Ann Rev Neurosci 23:393–415

    CAS  PubMed  Google Scholar 

  • Sanes JN, Donoghue JP, Thangaraj V, Edelman RR, Warach S (1995) Shared neural substrates controlling hand movements in human motor cortex. Science 268:1775–1777

    CAS  PubMed  Google Scholar 

  • Sawczuk A, Mosier KM (2001) Neural control of tongue movement with respect to respiration and swallowing. Crit Rev Oral Biol Med 12:18–37

    CAS  PubMed  Google Scholar 

  • Schieber MH (2001) Constraints on somatotopic organization in the primary motor cortex. J Neurophysiol 86:2125–2143

    CAS  PubMed  Google Scholar 

  • Seitz RJ, Roland E, Bohm C, Greitz T, Stone-Elander S (1990) Motor learning in man: a positron emission tomographic study. Neuroreport 1:57–60

    CAS  PubMed  Google Scholar 

  • Sessle BJ, Wiesendanger M (1982) Structural and functional definition of the motor cortex in the monkey (Macaca fascicularis). J Physiol (Lond) 323:245–265

    Google Scholar 

  • Sessle BJ, Yao D (2003) Contribution of plasticity of sensorimotor cerebral cortex to development of communication skills. Behav Brain Sci (in press)

  • Sessle BJ, Martin RE, Murray GM, Masuda Y, Kemppainen P, Narita N, Seo K, Raouf R (1995) Cortical mechanisms controlling mastication and the swallowing in the awake monkey In: Morimoto T, Matsuya T, Takada K (eds). Brain and oral function. Elsevier, Amsterdam, pp 181–189

    Google Scholar 

  • Sha BF, England SJ, Parisi RA, Strobel RJ (2000) Force production of the genioglossus as a function of muscle length in normal humans. J Appl Physiol 88:1678–1684

    CAS  PubMed  Google Scholar 

  • Siebner HR, Rothwell J (2003) Transcranial magnetic stimulation: new insights into representational cortical plasticity. Exp Brain Res 148:1–16

    Article  PubMed  Google Scholar 

  • Stefan K, Kunesch E, Cohen LG, Benecke R, Classen J (2000) Induction of plasticity in the human motor cortex by paired associative stimulation. Brain 123:572–584

    Article  PubMed  Google Scholar 

  • Ungerleider LG, Doyon J, Karni A (2002) Imaging brain plasticity during motor skill learning. Neurobiol Learn Mem 78:553–564

    Article  PubMed  Google Scholar 

  • Urban PP, Hopf HC, Fleischer S, Zorowka PG, Muller-Forell W (1997) Impaired cortico-bulbar tract function in dysarthria due to hemispheric stroke. Functional testing using transcranial magnetic stimulation. Brain 120:1077–1084

    Article  PubMed  Google Scholar 

  • Urban PP, Wicht S, Hopf HC, Fleischer S, Nickel O (1999) Isolated dysarthria due to extracerebellar lacunar stroke: a central monoparesis of the tongue. J Neurol Neurosurg Psychiatry 66:495–501

    CAS  PubMed  Google Scholar 

  • Urban PP, Wicht S, Hopf HC (2001) Sensitivity of transcranial magnetic stimulation of cortico-bulbar vs. cortico-spinal tract involvement in Amyotrophic Lateral Sclerosis (ALS). J Neurol 248:850–855

    Article  CAS  PubMed  Google Scholar 

  • Waters RS, Samulack DD, Dykes RW, McKinley PA (1990) Topographic organization of baboon primary motor cortex: face, hand, forelimb, and shoulder representation. Somatosens Motor Res 7:485–514

    CAS  Google Scholar 

  • Wilson SA, Thickbroom GW, Mastaglia FL (1993) Transcranial magnetic stimulation mapping of the motor cortex in normal subjects. J Neurol Sci 118:134–144

    CAS  PubMed  Google Scholar 

  • Yamamura K, Narita N, Yao D, Martin RE, Masuda Y, Sessle BJ (2002) Effects of reversible bilateral inactivation of face primary motor cortex on mastication and swallowing. Brain Res 944:40–55

    Article  CAS  PubMed  Google Scholar 

  • Yao D, Yamamura K, Narita N, Martin RE, Murray GM, Sessle BJ (2002a) Neuronal activity patterns in primate primary motor cortex related to trained or semiautomatic jaw and tongue movements. J Neurophysiol 87:2531–2541

    PubMed  Google Scholar 

  • Yao D, Yamamura K, Narita N, Murray GM, Sessle BJ (2002b) Effects of reversible cold block of face primary somatosensory cortex on orofacial movements and related face primary motor cortex neuronal activity. Somatosens Motor Res 19:261–271

    Article  Google Scholar 

  • Yao DY, Yoshino K, Nishiura H, Yamamura K, Sessle BJ (2002c) Plasticity in primate primary motor cortex (MI) associated with learning of tongue-protrusion task. Program no. 662.9 2002. In: Abstract Viewer/Itinerary Planner, Society for Neuroscience, Washington DC. Online http://sfn.scholarone.com/itin2002/

Download references

Acknowledgements

We gratefully acknowledge the support of the Danish Technical Research Council, and the Canadian Institutes for Health Research (grant MT-4918). BJS is the holder of a Canada Research Chair.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Svensson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Svensson, P., Romaniello, A., Arendt-Nielsen, L. et al. Plasticity in corticomotor control of the human tongue musculature induced by tongue-task training. Exp Brain Res 152, 42–51 (2003). https://doi.org/10.1007/s00221-003-1517-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-003-1517-2

Keywords

Navigation