Skip to main content
Log in

Interactions between inhibitory and excitatory circuits in the human motor cortex

  • Review
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Cortical activity depends on the balance between excitatory and inhibitory influences. Several different excitatory and inhibitory systems in the human motor cortex can be tested by transcranial magnetic stimulation (TMS). While considerable information is known about these different inhibitory and excitatory phenomena individually, how they are related to each other and how they interact is not well understood. Several recent studies have investigated the interactions between some of these circuits by applying them together. It has been found that short-interval intracortical inhibition (SICI) and long-interval intracortical inhibition (LICI) are mediated by different circuits. LICI appears to inhibit SICI, which may occur through presynaptic GABAB receptors. Interhemispheric inhibition elicited by stimulation of the contralateral motor cortex also inhibits SICI and may share inhibitory mechanisms with LICI. Long-interval afferent inhibition induced by median nerve stimulation inhibits LICI but does not interact with SICI. Based on these results, a model of interactions between different inhibitory systems that can be tested and refined in the future is proposed. Further studies of the interaction between different cortical inhibitory and excitatory circuits should improve our understanding of the functional organization of the motor cortex and allow better interpretation of abnormal findings in disease states. It may also be developed into a new way of studying the pathophysiology of diseases and the effects of intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2A–D
Fig. 3A–D
Fig. 4A–D
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abbruzzese G, Marchese R, Buccolieri A, Gasparetto B, Trompetto C (2001) Abnormalities of sensorimotor integration in focal dystonia: a transcranial magnetic stimulation study. Brain 124:537–545

    Article  CAS  PubMed  Google Scholar 

  • Allison T, McCarthy G, Wood CC, Williamson PD, Spencer DD (1989) Human cortical potentials evoked by stimulation of the median nerve. II. Cytoarchitectonic areas generating long-latency activity. J Neurophysiol 62:711–722

    CAS  PubMed  Google Scholar 

  • Allison T, McCarthy G, Wood CC (1992) The relationship between human long-latency somatosensory evoked potentials recorded from the cortical surface and from the scalp. Electroencephalogr Clin Neurophysiol 84:301–314

    CAS  PubMed  Google Scholar 

  • Ashby P, Reynolds C, Wennberg R, Lozano AM, Rothwell J (1999) On the focal nature of inhibition and facilitation in the human motor cortex. Clin Neurophysiol 110:550–555

    Article  CAS  PubMed  Google Scholar 

  • Awiszus F, Feistner H, Urbach D, Bostock H (1999) Characterisation of paired-pulse transcranial magnetic stimulation conditions yielding intracortical inhibition or I-wave facilitation using a threshold-hunting paradigm. Exp Brain Res 129:317–324

    Article  CAS  PubMed  Google Scholar 

  • Berardelli A, Rona S, Inghilleri M, Manfredi M (1996) Cortical inhibition in Parkinson’s disease. A study with paired magnetic stimulation. Brain 119:71–77

    PubMed  Google Scholar 

  • Butefisch CM, Netz J, Wessling M, Seitz RJ, Homberg V (2003) Remote changes in cortical excitability after stroke. Brain 126:470–481

    Article  PubMed  Google Scholar 

  • Capaday C (1997) Neurophysiological methods for studies of the motor system in freely moving human subjects. J Neurosci Methods 74:201–218

    CAS  PubMed  Google Scholar 

  • Chan JH, Lin CS, Pierrot-Deseilligny E, Burke D (2002) Excitability changes in human peripheral nerve axons in a paradigm mimicking paired-pulse transcranial magnetic stimulation. J Physiol (Lond) 542:951–961

    Google Scholar 

  • Chen R (2000) Studies of human motor physiology with transcranial magnetic stimulation. Muscle Nerve 23: S26-S32

    Article  Google Scholar 

  • Chen R, Garg R (2000) Facilitatory I wave interaction in proximal arm and lower limb muscle representations of the human motor cortex. J Neurophysiol 83:1426–1434

    CAS  PubMed  Google Scholar 

  • Chen R, Samii A, Caños M, Wassermann E, Hallett M (1997a) Effects of phenytoin on cortical excitability in humans. Neurology 49:881–883

    CAS  PubMed  Google Scholar 

  • Chen R, Wassermann EM, Caños M, Hallett M (1997b) Impaired inhibition in writer’s cramp during voluntary muscle activation. Neurology 49:1054–1059

    CAS  PubMed  Google Scholar 

  • Chen R, Corwell B, Yaseen Z, Hallett M, Cohen LG (1998a) Mechanisms of cortical reorganization in lower-limb amputees. J Neurosci 18:3443–3450

    CAS  PubMed  Google Scholar 

  • Chen R, Tam A, Bütefisch C et al. (1998b) Intracortical inhibition and facilitation in different representations of the human motor cortex. J Neurophysiol 80:2870–2881

    CAS  PubMed  Google Scholar 

  • Chen R, Corwell B, Hallett M (1999a) Modulation of motor cortex excitability by median nerve and digit stimulation. Exp Brain Res 129:77–86

    CAS  PubMed  Google Scholar 

  • Chen R, Lozano AM, Ashby P (1999b) Mechanism of the silent period following transcranial magnetic stimulation. Evidence from epidural recordings. Exp Brain Res 128:539–542

    Article  CAS  PubMed  Google Scholar 

  • Chen R, Yung D, Li J-Y (2003) Organization of ipsilateral excitatory and inhibitory pathways in the human motor cortex. J Neurophysiol 89:1256–1264

    PubMed  Google Scholar 

  • Classen J, Schnitzler A, Binkofski F et al. (1997) The motor syndrome associated with exaggerated inhibition within the primary motor cortex of patients with hemiparetic stroke. Brain 120:605–619

    Article  PubMed  Google Scholar 

  • Daskalakis ZJ, Christensen BK, Chen R et al. (2002a) Evidence for impaired cortical inhibition in schizophrenia using transcranial magnetic stimulation. Arch Gen Psychiatry 59:347–354

    PubMed  Google Scholar 

  • Daskalakis ZJ, Christensen BK, Fitzgerald PB, Roshan L, Chen R (2002b) The mechanisms of interhemispheric inhibition in the human motor cortex. J Physiol (Lond) 543:317–326

    Google Scholar 

  • Davies CH, Davies SN, Collingridge GL (1990) Paired-pulse depression of monosynaptic GABA-mediated inhibitory postsynaptic responses in rat hippocampus. J Physiol (Lond) 424:513–531

    Google Scholar 

  • Deisz RA (1999) GABA(B) receptor-mediated effects in human and rat neocortical neurones in vitro. Neuropharmacology 38:1755–1766

    Article  CAS  PubMed  Google Scholar 

  • Di Lazzaro V, Restuccia D, Oliviero A et al. (1998) Magnetic transcranial stimulation at intensities below active motor threshold activates inhibitory circuits. Exp Brain Res 119:265–268

    PubMed  Google Scholar 

  • Di Lazzaro V, Oliviero A, Profice P et al. (1999) Direct demonstration of interhemispheric inhibition of the human motor cortex produced by transcranial magnetic stimulation. Exp Brain Res 124:520–524

    PubMed  Google Scholar 

  • Di Lazzaro V, Oliviero A, Profice P et al. (2000) Muscarinic receptor blockade has differential effects on the excitability of intracortical circuits in the human motor cortex. Exp Brain Res 135:455–461

    PubMed  Google Scholar 

  • Di Lazzaro V, Oliviero A, Tonali PA et al. (2002) Noninvasive in vivo assessment of cholinergic cortical circuits in AD using transcranial magnetic stimulation. Neurology 59:392–397

    PubMed  Google Scholar 

  • Ferbert A, Priori A, Rothwell JC et al. (1992) Interhemispheric inhibition of the human motor cortex. J Physiol (Lond) 453:525–546

    Google Scholar 

  • Fisher J, Nakamura Y, Bestmann S, Rothwell C, Bostock H (2002) Two phases of intracortical inhibition revealed by transcranial magnetic threshold tracking. Exp Brain Res 143:240–248

    CAS  PubMed  Google Scholar 

  • Floeter MK, Rothwell JC (1999) Releasing the brakes before pressing the gas pedal. Neurology 53:664–665

    CAS  PubMed  Google Scholar 

  • Forss N, Hari R, Salmelin R et al. (1994) Activation of the human posterior parietal cortex by median nerve stimulation. Exp Brain Res 99:309–315

    CAS  PubMed  Google Scholar 

  • Fuhr P, Agostino R, Hallett M (1991) Spinal motor neuron excitability during the silent period after cortical stimulation. Electroencephalogr Clin Neurophysiol 81:257–262

    CAS  PubMed  Google Scholar 

  • Gerloff C, Cohen LG, Floeter MK et al. (1998) Inhibitory influence of the ipsilateral motor cortex on responses to stimulation of the human cortex and pyramidal tract. J Physiol (Lond) 510:249–259

    Google Scholar 

  • Hallett M (2000) Transcranial magnetic stimulation and the human brain. Nature 406:147–150

    CAS  PubMed  Google Scholar 

  • Hanajima R, Ugawa Y, Terao Y et al. (1998) Paired-pulse magnetic stimulation of the human motor cortex: differences among I waves. J Physiol (Lond) 509:607–618

    Google Scholar 

  • Hanajima R, Ugawa Y, Machii K et al. (2001) Interhemispheric facilitation of the hand motor area in humans. J Physiol (Lond) 531:849–859

    Google Scholar 

  • Hanajima R, Ugawa Y, Terao Y et al. (2002) Mechanisms of intracortical I-wave facilitation elicited with paired- pulse magnetic stimulation in humans. J Physiol (Lond) 538:253–261

    Google Scholar 

  • Hari R, Reinikainen K, Kaukoranta E et al. (1984) Somatosensory evoked cerebral magnetic fields from SI and SII in man. Electroencephalogr Clin Neurophysiol 57:254–263

    CAS  PubMed  Google Scholar 

  • Hess A, Kunesch E, Classen J et al. (1999) Task-dependent modulation of inhibitory actions within the primary motor cortex. Exp Brain Res 124:321–330

    CAS  PubMed  Google Scholar 

  • Ho KH, Lee M, Nithi K, Palace J, Mills K (1999) Changes in motor evoked potentials to short-interval paired transcranial magnetic stimuli in multiple sclerosis. Clin Neurophysiol 110:712–719

    Article  CAS  PubMed  Google Scholar 

  • Ilic TV, Meintzschel F, Cleff U et al. (2002) Short-interval paired-pulse inhibition and facilitation of human motor cortex: the dimension of stimulus intensity. J Physiol (Lond) 545:153–167

    Google Scholar 

  • Inghilleri M, Berardelli A, Cruccu G, Manfredi M (1993) Silent period evoked by transcranial stimulation of the human motor cortex and cervicomedullary junction. J Physiol (Lond) 466:521–534

    Google Scholar 

  • Kang Y, Kaneko T, Ohishi H, Endo K, Araki T (1994) Spatiotemporally differential inhibition of pyramidal cells in the cat motor cortex. J Neurophysiol 71:280–293

    CAS  PubMed  Google Scholar 

  • Kobayashi M, Ng J, Theoret H, Pascual-Leone A (2003) Modulation of intracortical neuronal circuits in human hand motor area by digit stimulation. Exp Brain Res 149:1-8

    PubMed  Google Scholar 

  • Kujirai T, Caramia MD, Rothwell JC et al. (1993) Corticocortical inhibition in human motor cortex. J Physiol (Lond) 471:501–519

    Google Scholar 

  • Liepert J, Wessel K, Schwenkreis P et al. (1998) Reduced intracortical facilitation in patients with cerebellar degeneration. Acta Neurol Scand 98:318–323

    CAS  PubMed  Google Scholar 

  • Liepert J, Bar KJ, Meske U, Weiller C (2001) Motor cortex disinhibition in Alzheimer’s disease. Clin Neurophysiol 112:1436–1441

    Article  CAS  PubMed  Google Scholar 

  • Manganotti P, Zanette G, Bonato C et al. (1997) Crossed and direct effects of digital nerve stimulation on motor evoked potential: a study with magnetic brain stimulation. Electroencephalogr Clin Neurophysiol 105:280–289

    Article  CAS  PubMed  Google Scholar 

  • Matthews PB (1999) The effect of firing on the excitability of a model motoneurone and its implications for cortical stimulation. J Physiol (Lond) 518:867–882

    Google Scholar 

  • McCormick DA (1989) GABA as an inhibitory neurotransmitter in human cerebral cortex. J Neurophysiol 62:1018–1027

    PubMed  Google Scholar 

  • Mott DD, Lewis DV (1994) The pharmacology and function of central GABAB receptors. Int Rev Neurobiol 36:97–223

    CAS  PubMed  Google Scholar 

  • Nakamura H, Kitagawa H, Kawaguchi Y, Tsuji H (1997) Intracortical facilitation and inhibition after transcranial magnetic stimulation in conscious humans. J Physiol (Lond) 498:817–823

    Google Scholar 

  • Oechsner M, Zangemeister WH (1999) Prolonged postexcitatory inhibition after transcranial magnetic stimulation of the motor cortex in patients with cerebellar ataxia. J Neurol Sci 168:107–111

    Article  CAS  PubMed  Google Scholar 

  • Pinto AD, Chen R (2001) Suppression of the motor cortex by magnetic stimulation of the cerebellum. Exp Brain Res 140:505–510

    Article  CAS  PubMed  Google Scholar 

  • Pinto AD, Lang AE, Chen R (2002) The cerebellothalamocortical pathway in Parkinson’s disease. Neurology (Suppl 3) 58: A64

  • Pinto AD, Lang AE, Chen R (2003) The cerebellothalamocortical pathway in essential tremor. Neurology 60:1985–1987

    PubMed  Google Scholar 

  • Priori A, Berardelli A, Inghilleri M, Accornero N, Manfredi M (1994) Motor cortical inhibition and the dopaminergic system. Pharmacological changes in the silent period after transcranial magnetic brain stimulation in normal subjects, patients with Parkinson’s disease and drug-induced parkinsonism. Brain 117:317–323

    PubMed  Google Scholar 

  • Quartarone A, Battaglia F, Majorana G et al. (2002) Different patterns of I-waves summation in ALS patients according to the central conduction time. Clin Neurophysiol 113:1301–1307

    Article  CAS  PubMed  Google Scholar 

  • Reynolds C, Ashby P (1999) Inhibition in the human motor cortex is reduced just before a voluntary contraction. Neurology 53:730–735

    CAS  PubMed  Google Scholar 

  • Ridding MC, Inzelberg R, Rothwell JC (1995a) Changes in excitability of motor cortical circuitry in patients with Parkinson’s disease. Ann Neurol 37:181–188

    CAS  PubMed  Google Scholar 

  • Ridding MC, Sheean G, Rothwell JC, Inzelberg R, Kujirai T (1995b) Changes in the balance between motor cortical excitation and inhibition in focal, task specific dystonia. J Neurol Neurosurg Psychiatry 39:493–498

    Google Scholar 

  • Ridding MC, Taylor JL, Rothwell JC (1995c) The effect of voluntary contraction on corticocortical inhibition in human motor cortex. J Physiol (Lond) 487:541–548

    Google Scholar 

  • Ridding MC, Brouwer B, Nordstrom MA (2000) Reduced interhemispheric inhibition in musicians. Exp Brain Res 133:249–253

    CAS  PubMed  Google Scholar 

  • Rohrbacher J, Jarolimek W, Lewen A, Misgeld U (1997) GABAB receptor-mediated inhibition of spontaneous inhibitory synaptic currents in rat midbrain culture. J Physiol (Lond) 500:739–749

    Google Scholar 

  • Rona S, Berardelli A, Vacca L, Inghilleri M, Manfredi M (1998) Alterations of motor cortical inhibition in patients with dystonia. Mov Disord 13:118–124

    CAS  PubMed  Google Scholar 

  • Roshan L, Paradiso GO, Chen R (2003) Two phases of short-interval intracortical inhibition. Exp Brain Res DOI 10.1007/s00221-003-1502-9

  • Rothwell JC (1997) Techniques and mechanisms of action of transcranial stimulation of the human motor cortex. J Neurosci Methods 74:113–122

    CAS  PubMed  Google Scholar 

  • Sailer A, Molnar GF, Cunic DI, Chen R (2002) Effect of peripheral sensory input on cortical inhibition in humans. J Physiol (Lond) 544:617–629

    Google Scholar 

  • Sailer A, Molnar GF, Paradiso G et al. (2003) Short and long latency afferent inhibition in Parkinson’s disease. Brain 126:1883–1894

    Google Scholar 

  • Sanger TD, Garg RR, Chen R (2001) Interactions between two different inhibitory systems in the human motor cortex. J Physiol (Lond) 530:307–317

    Google Scholar 

  • Schafer M, Biesecker JC, Schulze-Bonhage A, Ferbert A (1997) Transcranial magnetic double stimulation: influence of the intensity of the conditioning stimulus. Electroencephalogr Clin Neurophysiol 105:462–469

    PubMed  Google Scholar 

  • Schwenkreis P, Tegenthoff M, Witscher K et al. (2002) Motor cortex activation by transcranial magnetic stimulation in ataxia patients depends on the genetic defect. Brain 125:301–309

    Article  PubMed  Google Scholar 

  • Siebner HR, Dressnandt J, Auer C, Conrad B (1998) Continuous intrathecal baclofen infusions induced a marked increase in the transcranially evoked silent period in a patient with generalized dystonia. Muscle Nerve 21:1209–1212

    Article  CAS  PubMed  Google Scholar 

  • Somogyi P, Tamas G, Lujan R, Buhl EH (1998) Salient features of synaptic organisation in the cerebral cortex. Brain Res Brain Res Rev 26:113–135

    Article  CAS  PubMed  Google Scholar 

  • Strafella AP, Paus T (2001) Cerebral blood-flow changes induced by paired-pulse transcranial magnetic stimulation of the primary motor cortex. J Neurophysiol 85:2624–2629

    CAS  PubMed  Google Scholar 

  • Tamburin S, Manganotti P, Zanette G, Fiaschi A (2001) Cutaneomotor integration in human hand motor areas: somatotopic effect and interaction of afferents. Exp Brain Res 141:232–241

    Article  CAS  PubMed  Google Scholar 

  • Tokimura H, Ridding MC, Tokimura Y, Amassian VE, Rothwell JC (1996) Short latency facilitation between pairs of threshold magnetic stimuli applied to human motor cortex. Electroencephalogr Clin Neurophysiol 103:263–272

    Article  Google Scholar 

  • Tokimura H, Di Lazzaro V, Tokimura Y et al. (2000) Short latency inhibition of human hand motor cortex by somatosensory input from the hand. J Physiol (Lond) 523:503–513

    Google Scholar 

  • Ugawa Y, Day BL, Rothwell JC et al. (1991) Modulation of motor cortical excitability by electrical stimulation over the cerebellum in man. J Physiol (Lond) 441:57–72

    Google Scholar 

  • Ugawa Y, Hanajima R, Kanazawa I (1994) Motor cortex inhibition in patients with ataxia. Electroencephalogr Clin Neurophysiol 93:225–229

    CAS  PubMed  Google Scholar 

  • Ugawa Y, Uesaka Y, Terao Y, Hanajima R, Kanazawa I (1995) Magnetic stimulation over the cerebellum in humans. Ann Neurol 37:703–713

    CAS  PubMed  Google Scholar 

  • Ugawa Y, Terao Y, Hanajima R et al. (1997) Magnetic stimulation over the cerebellum in patients with ataxia. Electroencephalogr Clin Neurophysiol 104:453–458

    Article  CAS  PubMed  Google Scholar 

  • Valls-Solé J, Pascual-Leone A, Wassermann EM, Hallett M (1992) Human motor evoked responses to paired transcranial magnetic stimuli. Electroencephalogr Clin Neurophysiol 85:355–364

    PubMed  Google Scholar 

  • Wassermann EM, Samii A, Mercuri B et al. (1996) Responses to paired transcranial magnetic stimuli in resting, active, and recently activated muscle. Exp Brain Res 109:158–163

    CAS  PubMed  Google Scholar 

  • Werhahn KJ, Taylor J, Ridding M, Meyer BU, Rothwell JC (1996) Effect of transcranial magnetic stimulation over the cerebellum on the excitability of human motor cortex. Electroencephalogr Clin Neurophysiol 101:58–66

    Article  CAS  PubMed  Google Scholar 

  • Werhahn KJ, Kunesch E, Noachtar S, Benecke R, Classen J (1999) Differential effects on motorcortical inhibition induced by blockade of GABA uptake in humans. J Physiol (Lond) 517:591–597

    Google Scholar 

  • Wessel K, Tegenthoff M, Vorgerd M et al. (1996) Enhancement of inhibitory mechanisms in the motor cortex of patients with cerebellar degeneration: a study with transcranial magnetic brain stimulation. Electroencephalogr Clin Neurophysiol 101:273–280

    Article  CAS  PubMed  Google Scholar 

  • Wu T, Sommer M, Tergau F, Paulus W (2000) Modification of the silent period by double transcranial magnetic stimulation. Clin Neurophysiol 111:1868–1872

    Article  CAS  PubMed  Google Scholar 

  • Ziemann U, Lönnecker S, Steinhoff BJ, Paulus W (1996a) Effects of antiepileptic drugs on motor cortex excitability in humans: a transcranial magnetic stimulation study. Ann Neurol 40:367–378

    CAS  PubMed  Google Scholar 

  • Ziemann U, Lönnecker S, Steinhoff BJ, Paulus W (1996b) The effect of lorazepam on the motor cortical excitability in man. Exp Brain Res 109:127–135

    CAS  PubMed  Google Scholar 

  • Ziemann U, Rothwell JC, Ridding MC (1996c) Interaction between intracortical inhibition and facilitation in human motor cortex. J Physiol (Lond) 496:873–881

    Google Scholar 

  • Ziemann U, Paulus W, Rothenberger A (1997) Decreased motor inhibition in Tourette’s disorder: evidence from transcranial magnetic stimulation. Am J Psychiatry 154:1277–1284

    CAS  PubMed  Google Scholar 

  • Ziemann U, Chen R, Cohen LG, Hallett M (1998a) Dextromethorphan decreases the excitability of the human motor cortex. Neurology 51:1320–1324

    CAS  PubMed  Google Scholar 

  • Ziemann U, Hallett M, Cohen LG (1998b) Mechanisms of deafferentation-induced plasticity in human motor cortex. J Neurosci 18:7000–7007

    CAS  PubMed  Google Scholar 

  • Ziemann U, Tergau F, Wassermann EM et al. (1998c) Demonstration of facilitatory I wave interaction in the human motor cortex by paired transcranial magnetic stimulation. J Physiol (Lond) 511:181–190

    Google Scholar 

  • Ziemann U, Tergau F, Wischer S, Hildebrandt J, Paulus W (1998d) Pharmacological control of facilitatory I-wave interaction in the human motor cortex. A paired transcranial magnetic stimulation study. Electroencephalogr Clin Neurophysiol 109:321–330

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank Drs. Guillermo Paradiso, Jeff Daskalakis, and Ristuko Hanajima for their helpful comments on the manuscript. The author’s work was supported by the Canadian Institutes of Health Research, Canada Foundation for Innovation, Ontario Innovation Trust, and the University Health Network Krembil Family Chair in Neurology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, R. Interactions between inhibitory and excitatory circuits in the human motor cortex. Exp Brain Res 154, 1–10 (2004). https://doi.org/10.1007/s00221-003-1684-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-003-1684-1

Keywords

Navigation