Skip to main content
Log in

Changes in AMPA subunit expression in the mouse brain after chronic treatment with the antidepressant maprotiline: a link between noradrenergic and glutamatergic function?

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Potentiation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor function has been proposed as being useful in the treatment of depression, but thus far, little is known about the possible changes in AMPA receptor expression in the brain, after antidepressant treatment. The present study was carried out to study the expression of AMPA receptor subunits in different brain regions of mice that had been chronically injected with maprotiline. The latter is a modified tricyclic antidepressant that functions as a noradrenaline uptake inhibitor. Daily intraperitoneal injection with 10 mg/kg maprotiline for 30 days resulted in significantly increased GluR1 and GluR2/3 subunit expression in the nucleus accumbens and dorsal striatum as detected by immunohistochemistry; and significantly increased GluR1 and GluR2/3 expression in the hippocampus, as demonstrated by Western blot analysis. No change, or a decrease in GluR2 expression was detected in all the brain regions by both immunohistochemistry and Western blots. The increase in GluR1 and GluR2/3, but no increase in GluR2 subunits suggests that there could be an increase in calcium permeability of AMPA receptors in limbic/striatal brain regions after maprotiline treatment. This could lead to increased synaptic activity or plasticity in the hippocampus and striatum, and may underlie the therapeutic effect of maprotline, and possibly, other antidepressant drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Baumann PA, Maitre L (1979) Neurobiochemical aspects of maprotiline (Ludiomil) action. J Int Med Res 7:391–400

    PubMed  CAS  Google Scholar 

  • Berman RM, Cappiello A, Anand A, Oren DA, Heninger GR, Charney DS, Krystal JH (2000) Antidepressant effects of ketamine in depressed patients. Biol Psychiatry 47:351–354

    Article  PubMed  CAS  Google Scholar 

  • Black MD (2005) Therapeutic potential of positive AMPA modulators and their relationship to AMPA receptor subunits. A review of preclinical data. Psychopharmacology 179:154–163

    Article  PubMed  CAS  Google Scholar 

  • Borsini F, Meli A (1988) Is the forced swimming test a suitable model for revealing antidepressant activity? Psychopharmacology 94:147–160

    Article  PubMed  CAS  Google Scholar 

  • Brandoli C, Sanna A, De Bernardi MA, Follesa P, Brooker G, Mocchetti I (1998) Brain-derived neurotrophic factor and basic fibroblast growth factor downregulate NMDA receptor function in cerebellar granule cells. J Neurosci 1998 18:7953–7961

    CAS  Google Scholar 

  • Bremner JD, Narayan M, Anderson ER, Staibe LH, Miller HL, Charney DS (2000) Hippocampal volume reduction in major depression. Am J Psychiatry 157:115–118

    Article  PubMed  CAS  Google Scholar 

  • Burnashev N, Khodorova A, Jonas P, Helm PJ, Wisden W, Monyer H, Seeburg PH, Sakmann B (1992) Calcium-permeable AMPA-kainate receptors in fusiform cerebellar glial cells. Science 256:1566–1570

    Article  PubMed  CAS  Google Scholar 

  • Fowler JH, Whalley K, Murray T, O’neill MJ, McCulloch J (2004) The AMPA receptor potentiator LY404187 increases cerebral glucose utilization and c-fos expression in the rat. J Cereb Blood Flow Metab 24:1098–1109

    Article  PubMed  CAS  Google Scholar 

  • Gereau RW IV, Conn PJ (1994) Presynaptic enhancement of excitatory synaptic transmission by beta-adrenergic receptor activation. J Neurophysiol 72:1438–1442

    PubMed  CAS  Google Scholar 

  • Gould E, Tanapat P, McEwen BS, Flugge G, Fuchs E (1998) Proliferation of granule cell precursors in the dentate gyrus of adult monkeys is diminished by stress. Proc Natl Acad Sci USA 95:3168–3171

    Article  PubMed  CAS  Google Scholar 

  • Hollmann M, Hartley M, Heinemann S (1991) Ca2+ permeability of KA-AMPA-gated glutamate receptor channels depends on subunit composition. Science 252:851–853

    Article  PubMed  CAS  Google Scholar 

  • Jordan GR, McCulloch J, Shahid M, Hill DR, Henry B, Horsburgh K (2005) Regionally selective and dose-dependent effects of the ampakines Org 26576 and Org 24448 on local cerebral glucose utilisation in the mouse as assessed by (14)C-2-deoxyglucose autoradiography. Neuropharmacology 49:254–264

    Article  PubMed  CAS  Google Scholar 

  • Kato G, Weitsch AF (1988) Neurochemical profile of tianeptine, a new antidepressant drug. Clin Neuropharmacol 11:S43–50

    PubMed  CAS  Google Scholar 

  • Knapp RJ, Goldenberg R, Shuck C, Cecil A, Watkins J, Miller C, Crites G, Malatynska E (2002) Antidepressant activity of memory enhancing drugs in the reduction of submissive behavior model. Eur J Pharmacol 440:27–35

    Article  PubMed  CAS  Google Scholar 

  • Kole MH, Swan L, Fuchs E (2002) The antidepressant tianeptine persistently modulates glutamate receptor currents of the hippocampal CA3 commissural associational synapse in chronically stressed rats. Eur J Neurosci 16:807–816

    Article  PubMed  Google Scholar 

  • Lauterborn JC, Lynch G, Vanderklish P, Arai A, Gall CM (2000) Positive modulation of AMPA receptors increases neurotrophin expression by hippocampal and cortical neurons. J Neurosci 20:8–21

    PubMed  CAS  Google Scholar 

  • Li X, Tizzano JP, Griffey K, Clay M, Lindstrom T, Skolnick P (2001) Antidepressant-like actions of an AMPA receptor potentiator (LY392098). Neuropharmacology 40:1028–1033

    Article  PubMed  CAS  Google Scholar 

  • Li X, Witkin JM, Need AB, Skolnick P (2003) Enhancement of antidepressant potency by a potentiator of AMPA receptors. Cell Mol Neurobiol 23:419–430

    Article  PubMed  CAS  Google Scholar 

  • Mammen AL, Huganir RL, O’Brien RJ (1997) Redistribution and stabilization of cell surface glutamate receptors during synapse formation. J Neurosci 17:7351–7358

    PubMed  CAS  Google Scholar 

  • Martinez-Turrillas R, Frechilla D, Del Rio J (2002) Chronic antidepressant treatment increases the membrane expression of AMPA receptors in rat hippocampus. Neuropharmacology 43:1230–1237

    Article  PubMed  CAS  Google Scholar 

  • Meador-Woodruff JH, Hogg AJ Jr, Smith RE (2001) Striatal ionotropic glutamate receptor expression in schizophrenia, bipolar disorder, and major depressive disorder. Brain Res Bull 55:631–640

    Article  PubMed  CAS  Google Scholar 

  • Parra A, Martos A, Monleon S, Carmen Arenas M, Vinader-Caerols C (2000) Effects of acute and chronic maprotiline administration on inhibitory avoidance in male mice. Behav Brain Res 109:1–7

    Article  PubMed  CAS  Google Scholar 

  • Partin KM, Fleck MW, Mayer ML (1996) AMPA receptor flip/flop mutants affecting deactivation, desensitization, and modulation by cyclothiazide, aniracetam, and thiocyanate. J Neurosci 16:6634–6647

    PubMed  CAS  Google Scholar 

  • Paul IA, Skolnick P (2003) Glutamate and depression: clinical and preclinical studies. Ann N Y Acad Sci 1003:250–272

    Article  PubMed  CAS  Google Scholar 

  • Petrie RX, Reid IC, Stewart CA (2000) The N-methyl-d-aspartate receptor, synaptic plasticity, and depressive disorder. A critical review. Pharmacol Ther 87:11–25

    Article  PubMed  CAS  Google Scholar 

  • Porsolt RD, Bertin A, Jalfre M (1977a) Behavioral despair in mice: a primary screening test for antidepressants. Arch Int Pharmacodyn Ther 229:327–336

    CAS  Google Scholar 

  • Porsolt RD, Le Pichon M, Jalfre M (1977b) Depression: a new animal model sensitive to antidepressant treatments. Nature 266:730–732

    Article  CAS  Google Scholar 

  • Quirk JC, Nisenbaum ES (2002) LY404187: a novel positive allosteric modulator of AMPA receptors. CNS Drug Rev 8:255–282

    Article  PubMed  CAS  Google Scholar 

  • Rogoz Z, Skuza G, Maj J, Danysz W (2002) Synergistic effect of uncompetitive NMDA receptor antagonists and antidepressant drugs in the forced swimming test in rats. Neuropharmacology 42:1024–1030

    Article  PubMed  CAS  Google Scholar 

  • Scanziani M, Gahwiler BH, Thompson SM (1993) Presynaptic inhibition of excitatory synaptic transmission mediated by alpha adrenergic receptors in area CA3 of the rat hippocampus in vitro. J Neurosci 13:5393–53401

    PubMed  CAS  Google Scholar 

  • Shutoh F, Hamada S, Shibata M, Narita M, Shiga T, Azmitia EC, Okado N (2002) Long term depletion of serotonin leads to selective changes in glutamate receptor subunits. Neurosci Res 38:365–371

    Article  Google Scholar 

  • Skolnick P (1999) Antidepressants for the new millennium. Eur J Pharmacol 375:31–40

    Article  PubMed  CAS  Google Scholar 

  • Skolnick P (2002) Beyond monoamine-based therapies: clues to new approaches. J Clin Psychiatry 63:19–23

    PubMed  CAS  Google Scholar 

  • Skolnick P, Legutko B, Li X, Bymaster FP (2001) Current perspectives on the development of non-biogenic amine-based antidepressants. Pharmacol Res 43:411–423

    Article  PubMed  CAS  Google Scholar 

  • Steru L, Chermat R, Thierry B, Simon P (1985) The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology 85:367–370

    Article  PubMed  CAS  Google Scholar 

  • Svenningsson P, Tzavara ET, Witkin JM, Fienberg AA, Nomikos GG, Greengard P (2002) Involvement of striatal and extrastriatal DARPP-32 in biochemical and behavioral effects of fluoxetine (Prozac). Proc Natl Acad Sci USA 99:3182–3187

    Article  PubMed  CAS  Google Scholar 

  • Trullas R (1997) Functional NMDA antagonists: a new class of antidepressant agents. In: Skolnick P (eds) Antidpressants: new pharmacological strategies. Humana Press, Totowa, pp 103–124

    Google Scholar 

  • Trullas R, Skolnick P (1990) Functional antagonists at the NMDA receptor complex exhibit antidepressant actions. Eur J Pharmacol 185:1–10

    Article  PubMed  CAS  Google Scholar 

  • Verdoorn TA, Burnashev N, Monyer H, Seeburg PH, Sakmann B (1991) Structural determinants of ion flow through recombinant glutamate receptor channels. Science 252:1715–1718

    Article  PubMed  CAS  Google Scholar 

  • Wilde MI, Benfield P (1995) Tianeptine. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy in depression and coexisting anxiety and depression. Drugs 49:411–439

    Article  PubMed  CAS  Google Scholar 

  • Zafra F, Hengerer B, Leibrock J, Thoenen H, Lindholm D (1990) Activity dependent regulation of BDNF and NGF mRNAs in the rat hippocampus is mediated by non-NMDA glutamate receptors. EMBO J 9:3545–3550

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the National University of Singapore (R-184-000-041-213).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Yi Ong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, CH., He, X., Yang, J. et al. Changes in AMPA subunit expression in the mouse brain after chronic treatment with the antidepressant maprotiline: a link between noradrenergic and glutamatergic function?. Exp Brain Res 170, 448–456 (2006). https://doi.org/10.1007/s00221-005-0228-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-005-0228-2

Keywords

Navigation