Skip to main content
Log in

Rate code and temporal code for frequency of whisker stimulation in rat primary and secondary somatic sensory cortex

Experimental Brain Research Aims and scope Submit manuscript

Abstract

We recorded responses to frequencies of whisker stimulation from 479 neurons in primary (S1) and secondary (S2) somatic sensory cortex of 26 urethane-anesthetized rats. Five whiskers on the right side of the snout were deflected with air puffs at seven frequencies between 1 and 18/s. In left S1 (barrels and septa) and S2, subsets of neurons (5%) responded to whisker stimulation across the entire range of frequencies with ≥1 electrical discharges/ten stimuli (full responders). In contrast, 60% of the recorded cells responded above threshold only at stimulus frequencies below 6/s and 35% remained subthreshold at all frequencies tested. Thus, the full responders are unique in that they were always responsive and appeared particularly suited to facilitate a dynamic, broadband processing of stimulus frequency. Full responders were most responsive at 1 stimulus/s, and showed greatest synchrony with whisker motion at 18 stimuli/s. The barrel cells responded with the greatest temporal accuracy between 3 and 15 stimuli/s. The septum cells responded less accurately, but maintained their accuracy at all frequencies. Only septum cells continued to increase their discharge rate with increasing stimulus frequency. The S2 cells discharged with lowest temporal accuracy modulated only by stimulus frequencies ≤6/s and exhibited the steepest decrease in discharge/stimulus with increasing stimulus frequency. Our observations suggest that full responders in the septa are well suited to encode high frequencies of whisker stimulation in timing and rate of discharge. The barrel cells, in contrast, showed the strongest temporal coding at stimulus frequencies in the middle range, and S2 cells were most sensitive to differences in low frequencies. The ubiquitous decline in discharge/stimulus in S1 and S2 may explain the decrease in blood flow observed at increasing stimulus frequency with functional imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Aertsen AMH, Gerstein GL, Habib MK, Palm G (1989) Dynamics of neuronal firing correlation: modulation of “effective connectivity”. J Neurophysiol 61:900–917

    PubMed  CAS  Google Scholar 

  • Ahissar E, Kleinfeld D (2003) Closed-loop neuronal computations: focus on vibrissa somatosensation in rat. Cereb Cortex 13:53–62

    Article  PubMed  Google Scholar 

  • Ahissar E, Haidarliu S, Zacksenshouse M (1997) Decoding temporally encoded sensory input by cortical oscillations and thalamic phase comparators. Proc Natl Acad Sci USA 94:11633–11638

    Article  PubMed  CAS  Google Scholar 

  • Ahissar E, Sosnik R, Haidarliu S (2000) Transformation from temporal to rate coding in a somatosensory thalamocortical pathway. Nature 406:302–306

    Article  PubMed  CAS  Google Scholar 

  • Ahissar E, Sosnik R, Bagdasarian K, Haidarliu S (2001) Temporal frequency of whisker movement. II. Laminar organization of cortical representations. J Neurophysiol 86:354–367

    PubMed  CAS  Google Scholar 

  • Arabzadeh E, Petersen RS, Diamond ME (2003) Encoding of whisker vibration by rat barrel cortex neurons: implications for texture discrimination. J Neurosci 23:9146–9154

    PubMed  CAS  Google Scholar 

  • Armstrong-James M, Fox K (1987) Spatiotemporal convergence and divergence in the rat SI “barrel” cortex. J Comp Neurol 263:265–281

    Article  PubMed  CAS  Google Scholar 

  • Armstrong-James M, George MJ (1988) Influence of anesthesia on spontaneous activity and receptive field size of single units in rat SmI neocortex. Exp Neurol 99:369–387

    Article  PubMed  CAS  Google Scholar 

  • Armstrong-James M, Diamond ME, Ebner FF (1994) An innocuous bias in whisker use in adult rats modifies receptive fields of barrel cortex neurons. J Neurosci 14:6978–6991

    PubMed  CAS  Google Scholar 

  • Berg RW, Kleinfeld D (2003) Rhythmic whisking by rat: retraction as well as protraction of the vibrissae is under active muscular control. J Neurophysiol 89:104–117

    Article  PubMed  Google Scholar 

  • Brecht M, Sakmann B (2002) Dynamic representation of whisker deflection by synaptic potentials in spiny stellate and pyramidal cells in the barrels and septa of layer 4 rat somatosensory cortex. J Physiol 543:49–70

    Article  PubMed  CAS  Google Scholar 

  • Brett-Green B, Paulsen M, Staba RJ, Fifkova E, Barth DS (2004) Two distinct regions of secondary somatosensory cortex in the rat: topographical organization and multisensory responses. J Neurophysiol 91:1327–1336

    Article  PubMed  Google Scholar 

  • Brumberg JC, Pinto DJ, Simons DJ (1999) Cortical columnar processing in the rat whisker-to-barrel system. J Neurophysiol 82:1808–1817

    PubMed  CAS  Google Scholar 

  • Burton H, Mitchell G, Brent D (1982) Second somatic sensory area in the cerebral cortex of cats: somatotopic organization and cytoarchitecture. J Comp Neurol 210:109–135

    Article  PubMed  CAS  Google Scholar 

  • Carvell GE, Simons DJ (1986) Somatotopic organization of the second somatosensory area (SII) in the cerebral cortex of the mouse. Somatosens Res 3:213–237

    PubMed  CAS  Google Scholar 

  • Carvell GE, Simons DJ (1987) Thalamic and corticocortical connections of the second somatic sensory area of the mouse. J Comp Neurol 265:409–427

    Article  PubMed  CAS  Google Scholar 

  • Carvell GE, Simons DJ (1990) Biometric analysis of vibrissal tactile discrimination in the rat. J Neurosci 10:2638–2684

    PubMed  CAS  Google Scholar 

  • Carvell GE, Simons DJ (1995) Task and subject related differences in sensorimotor behavior during active touch. Somatosens Mot Res 12:1–9

    PubMed  CAS  Google Scholar 

  • Cascio CJ, Sathian K (2001) Temporal cues contribute to tactile perception of roughness. J Neurosci 21:5289–5296

    PubMed  CAS  Google Scholar 

  • Castro-Alamancos MA (2004) Absence of rapid sensory adaptation in neocortex during information processing states. Neuron 41:455–464

    Article  PubMed  CAS  Google Scholar 

  • Castro-Alamancos MA, Oldford E (2002) Cortical sensory suppression during arousal is due to the activity-dependent depression of thalamocortical synapses. J Physiol 541:319–331

    Article  PubMed  CAS  Google Scholar 

  • Champney G, Sachdev R, Maguire M, Melzer P, Ebner F (2001) Neural encoding of frequency of whisker stimulation in S1 and S2 is influenced by callosal input. Soc Neurosci Abstr 27:51.11

    Google Scholar 

  • Chmielowska J, Carvell GE, Simons DJ (1989) Spatial organization of thalamocortical and corticothalamic projection systems in rat SmI barrel cortex. J Comp Neurol 285:325–338

    Article  PubMed  CAS  Google Scholar 

  • Chung S, Li X, Nelson SB (2002) Short-term depression at thalamocortical synapses contributes to rapid adaptation of cortical sensory responses in vivo. Neuron 34:437–446

    Article  PubMed  CAS  Google Scholar 

  • Derdikman D, Hildesheim R, Ahissar E, Arieli A, Grinvald A (2003) Imaging spatiotemporal dynamics of surround inhibition in the barrels somatosensory cortex. J Neurosci 23:3100–3105

    PubMed  CAS  Google Scholar 

  • Detre JA, Ances BM, Takahashi K, Greenberg JH (1998) Signal averaged laser Doppler measurements of activation-flow coupling in the rat forepaw somatosensory cortex. Brain Res 796:91–98

    Article  PubMed  CAS  Google Scholar 

  • Diamond ME, Armstrong-James M, Ebner FF (1992) Somatic sensory responses in the rostral sector of the posterior group (Pom) and in the ventral posterior medial nucleus (VPM) of the rat thalamus. J Comp Neurol 318:462–476

    Article  PubMed  CAS  Google Scholar 

  • Dörfl J, Welker E, Melzer P, Van der Loos H (1988) Left–right interactions determine the central effect of whisker clipping in the adult mouse; a deoxyglucose study. Soc Neurosci Abstr 14:424

    Google Scholar 

  • Dykes RW, Lamour Y (1988) An electrophysiological study of single somatosensory neurons in rat granular cortex serving the limbs: a laminar analysis. J Neurophysiol 60:703–724

    PubMed  CAS  Google Scholar 

  • Erchova IA, Lebedev MA, Diamond ME (2002) Somatosensory cortical neuronal population activity across states of anesthesia. Eur J Neurosci 15:744–752

    Article  PubMed  Google Scholar 

  • Fabri M, Burton H (1991) Ipsilateral cortical connections of primary somatic sensory cortex in rats. J Comp Neurol 311:405–424

    Article  PubMed  CAS  Google Scholar 

  • Fanselow EE, Nicolelis MAL (1999) Behavioral modulation of tactile responses in the rat somatosensory system. J Neurophysiol 19:7603–7616

    CAS  Google Scholar 

  • Fee MS, Mitra PP, Kleinfeld D (1997) Central versus peripheral determinants of patterned spike activity in rat vibrissa cortex during whisking. J Neurophysiol 78:1144–1149

    PubMed  CAS  Google Scholar 

  • Fox K, Armstrong-James M (1986) The role of the anterior intralaminar nuclei and N-methyl d-aspartate receptors in the generation of spontaneous bursts in rat neocortical neurones. Exp Brain Res 63:505–518

    Article  PubMed  CAS  Google Scholar 

  • Friedberg MH, Lee SM, Ebner FF (1999) Modulation of receptive field properties of thalamic somatosensory neurons by the depth of anesthesia. J Neurophysiol 81:2243–2252

    PubMed  CAS  Google Scholar 

  • Ganguly K, Kleinfeld D (2004) Goal-directed whisking increases phase-locking between vibrissa movement and electrical activity in primary sensory cortex in rat. Proc Natl Acad Sci USA 101:12348–12353

    Article  PubMed  CAS  Google Scholar 

  • Gao P, Bermejo R, Zeigler HP (2001) Whisker deafferentation and rodent whisking patterns: behavioral evidence for a central pattern generator. J Neurosci 21:5374–5380

    PubMed  CAS  Google Scholar 

  • Garabedian CE, Jones SR, Merzenich MM, Dale A, Moore CI (2003) Band-pass response properties of rat SI neurons. J Neurophysiol 90:1379–1391

    Article  PubMed  Google Scholar 

  • Ghazanfar AA, Nicolelis MA (1997) Nonlinear processing of tactile information in the thalamocortical loop. J Neurophysiol 78:506–510

    PubMed  CAS  Google Scholar 

  • Gopal KV, Gross GW (1996) Auditory cortical neurons in vitro: initial pharmacological studies. Acta Otolaryngol 116:697–704

    Article  PubMed  CAS  Google Scholar 

  • Harris JA, Diamond ME (2000) Ipsilateral and contralateral transfer of tactile learning. Neuroreport 11:263–266

    Article  PubMed  CAS  Google Scholar 

  • Hernández A, Zainos A, Romo R (2000) Neuronal correlate of sensory discrimination in the somatosensory cortex. Proc Natl Acad Sci USA 97:6191–6196

    Article  PubMed  Google Scholar 

  • Hewson-Stoate N, Jones M, Martindale J, Berwick J, Mayhew J (2005) Further nonlinearities in neurovascular coupling in rodent barrel cortex. Neuroimage 24:565–574

    Article  PubMed  Google Scholar 

  • Hutson KA, Masterton RB (1986) The sensory contribution of a single vibrissa’s cortical barrel. J Neurophysiol 56:1196–1233

    PubMed  CAS  Google Scholar 

  • Ito M (1985) Processing of vibrissa sensory information within rat neocortex. J Neurophysiol 54:479–490

    PubMed  CAS  Google Scholar 

  • Johnson KO (1974) Reconstruction of population response to a vibratory stimulus in quickly adapting mechanoreceptive afferent fiber population innervating glabrous skin of the monkey. J Neurophysiol 37:48–72

    PubMed  CAS  Google Scholar 

  • Khatri V, Hartings JA, Simons DJ (2004) Adaptation in thalamic barreloid and cortical barrel neurons to periodic whisker deflections varying in frequency and velocity. J Neurophysiol 92:3244–3254

    Article  PubMed  CAS  Google Scholar 

  • Kim U, Ebner FF (1999) Barrels and septa: separate circuits in rat barrel field cortex. J Comp Neurol 408:489–505

    Article  PubMed  CAS  Google Scholar 

  • Kleinfeld D, Sachdev RN, Merchant LM, Jarvis MR, Ebner FF (2002) Adaptive filtering of vibrissa input in motor cortex of rat. Neuron 34:1021–1034

    Article  PubMed  CAS  Google Scholar 

  • König P, Engel AK, Singer W (1996) Integrator or coincidence detector? The role of the cortical neuron revisited. Trends Neurosci 19:130–137

    Article  PubMed  Google Scholar 

  • Koralek KA, Jensen KF, Killackey HP (1988) Evidence for two complementary patterns of thalamic input to the rat somatosensory cortex. Brain Res 463:346–351

    Article  PubMed  CAS  Google Scholar 

  • Krubitzer LA, Sesma MA, Kaas JH (1986) Microelectrode maps, myeloarchitecture, and cortical connections of three somatotopically organized representations of the body surface in the parietal cortex of squirrels. J Comp Neurol 250:403–430

    Article  PubMed  CAS  Google Scholar 

  • Krupa DJ, Matell MS, Brisben AJ, Oliveira LM, Nicolelis MA (2001) Behavioral properties of the trigeminal somatosensory system in rats performing whisker-dependent tactile discriminations. J Neurophysiol 21:5752–5763

    CAS  Google Scholar 

  • Krupa DJ, Wiest MC, Shuler MG, Laubach M, Nicolelis MA (2004) Layer-specific somatosensory cortical activation during active tactile discrimination. Science 304:1989–1992

    Article  PubMed  CAS  Google Scholar 

  • Levitt J, Levitt M (1968) Sensory hind-limb representation in SmI cortex of the cat. Exp Neurol 22:259–275

    Article  PubMed  CAS  Google Scholar 

  • Li L, Rema V, Ebner FF (2005) Chronic suppression of activity in barrel field cortex downregulates sensory responses in contralateral barrel field cortex. J Neurophysiol 94:3342–3356

    Article  PubMed  Google Scholar 

  • Lu SM, Lin RC (1993) Thalamic afferents of the barrel cortex: a light- and electron-microscopic study using Phaseolus vulgaris leucoagglutinin as an anterograde tracer. Somatosens Mot Res 10:1–16

    Article  PubMed  CAS  Google Scholar 

  • McCormick DA, Connors BW, Lighthall JW, Prince DA (1985) Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. J Neurophysiol 54:782–806

    PubMed  CAS  Google Scholar 

  • Melzer P, Ebner FF (2004) The BOLD response in somatic sensory cortex peaks with multiple whisker stimulation at low whisk rates: a functional magnetic resonance imaging study without anesthesia. Soc Neurosci Abstr 30:977.4

    Google Scholar 

  • Mineo L, Melzer P, Ebner F (2002) Whisk rate of blind rats is accelerated during object discrimination. Soc Neurosci Abstr 28:257.9

    Google Scholar 

  • Mirabella G, Battiston S, Diamond ME (2001) Integration of multiple-whisker inputs in rat somatosensory cortex. Cereb Cortex 11:164–170

    Article  PubMed  CAS  Google Scholar 

  • Moskalenko YE, Dowling JL, Liu D, Rovainen CM, Semernia VN, Woolsey TA (1996) LCBF changes in rat somatosensory cortex during whisker stimulation monitored by dynamic H2 clearance. Int J Psychophysiol 21:45–59

    Article  PubMed  CAS  Google Scholar 

  • Moore CI, Nelson SB, Sur M (1999) Dynamics of neuronal processing in rat somatosensory cortex. Trends Neurosci 22:513–520

    Article  PubMed  CAS  Google Scholar 

  • Mountcastle VB (1957) Modality and topographic properties of single neurons of cat’s somatic sensory cortex. J Neurophysiol 20:408–434

    PubMed  CAS  Google Scholar 

  • Mountcastle VB, Talbot WH, Darian-Smith I, Kornhuber HH (1967) Neural basis of the sense of flutter-vibration. Science 155:597–600

    Article  PubMed  CAS  Google Scholar 

  • Mountcastle VB, Talbot WH, Sakata H, Hyvärinen J (1969) Cortical neuronal mechanisms in flutter-vibration studied in unanesthetized monkeys. Neuronal periodicity and frequency discrimination. J Neurophysiol 32:453–484

    Google Scholar 

  • Ngai AC, Jolley MA, D’Ambrosio R, Meno JR, Winn HR (1999) Frequency-dependent changes in cerebral blood flow and evoked potentials during somatosensory stimulation in the rat. Brain Res 837:221–228

    Article  PubMed  CAS  Google Scholar 

  • Perkel DH, Gerstein GL, Moore GP (1967) Neuronal spike trains and stochastic point processes. II. Simultaneous spike trains. Biophys J 4:419–440

    Article  Google Scholar 

  • Pidoux B, Verley R (1979) Projections on the cortical somatic I barrel subfield from ipsilateral vibrissae in adult rodents. Electroencephalogr Clin Neurophysiol 46:715–726

    Article  PubMed  CAS  Google Scholar 

  • Pierret T, Lavallée P, Deschênes M (2000) Parallel streams for the relay of vibrissal information through thalamic barreloids. J Neurosci 20:7455–7462

    PubMed  CAS  Google Scholar 

  • Pruett JR Jr, Sinclair RJ, Burton H (2000) Response patterns in second somatosensory cortex (SII) of awake monkeys to passively applied tactile gratings. J Neurophysiol 84:780–797

    PubMed  Google Scholar 

  • Remple MS, Henry EC, Catania KC (2003) Organization of somatosensory cortex in the laboratory rat (Rattus norvegicus): evidence for two lateral areas joined at the representation of the teeth. J Comp Neurol 467:105–118

    Article  PubMed  Google Scholar 

  • Romo R, Hernández A, Zainos A, Lemus L, Brody CD (2002) Neuronal correlates of decision-making in secondary somatosensory cortex. Nat Neurosci 5:1217–1225

    Article  PubMed  CAS  Google Scholar 

  • Rose JE, Hind JE, Anderson DJ, Brugge JF (1971) Some effects of stimulus intensity on response of auditory nerve fibers in the squirrel monkey. J Neurophysiol 34:685–699

    PubMed  CAS  Google Scholar 

  • Salinas E, Hernández A, Zainos A, Romo R (2000) Periodicity and firing rate as candidate neural codes for the frequency of vibrotactile stimuli. J Neurosci 20:5503–5515

    PubMed  CAS  Google Scholar 

  • Shimegi S, Ichikawa T, Akasaki T, Sato H (1999) Temporal characteristics of response integration evoked by multiple whisker stimulations in the barrel cortex of rats. J Neurosci 15:10164–10175

    Google Scholar 

  • Shimegi S, Akasaki T, Ichikawa T, Sato H (2000) Physiological and anatomical organization of multiwhisker response interactions in the barrel cortex of rats. J Neurosci 20:6241–6248

    PubMed  CAS  Google Scholar 

  • Shuler MG, Krupa DJ, Nicolelis MA (2001) Bilateral integration of whisker information in the primary somatosensory cortex of rats. J Neurosci 21:5251–5261

    PubMed  CAS  Google Scholar 

  • Silva AC, Lee SP, Yang G, Iadecola C, Kim SG (1999) Simultaneous blood oxygenation level-dependent and cerebral blood flow functional magnetic resonance imaging during forepaw stimulation in the rat. J Cereb Blood Flow Metab 19:871–879

    Article  PubMed  CAS  Google Scholar 

  • Simons DJ (1978) Response properties of vibrissa units in rats SI somatosensory neocortex. J Neurophysiol 41:798–820

    PubMed  CAS  Google Scholar 

  • Simons DJ (1983) Multi-whisker stimulation and its effects on vibrissa units in rat SmI barrel cortex. Brain Res 276:178–182

    Article  PubMed  CAS  Google Scholar 

  • Simons DJ, Carvell GE, Hershey AE, Bryant DP (1992) Responses of barrel cortex neurons in awake rats and effects of urethane anesthesia. Exp Brain Res 91:259–272

    Article  PubMed  CAS  Google Scholar 

  • Sinclair RJ, Burton H (1991) Neuronal activity in the primary somatosensory cortex in monkeys (Macaca mulatta) during active touch of textured surface gratings: responses to groove width, applied force, and velocity of motion. J Neurophysiol 66:153–169

    PubMed  CAS  Google Scholar 

  • Spreafico R, Barbaresi P, Weinberg RJ, Rustioni (1987) A SII-projecting neurons in the rat thalamus: a single- and double-retrograde-tracing study. Somatosens Res 4:359–375

    Article  PubMed  CAS  Google Scholar 

  • Swadlow HA (1989) Efferent neurons and suspected interneurons in S-1 vibrissa cortex of the awake rabbit: receptive fields and axonal properties. J Neurophysiol 62:288–308

    PubMed  CAS  Google Scholar 

  • Swadlow HA (1991) Efferent neurons and suspected interneurons in second somatosensory cortex of the awake rabbit: receptive fields and axonal properties. J Neurophysiol 66:1392–1409

    PubMed  CAS  Google Scholar 

  • Ureshi M, Matsuura T, Kanno I (2004) Stimulus frequency dependence of the linear relationship between local cerebral blood flow and field potential evoked by activation of rat somatosensory cortex. Neurosci Res 48:147–153

    Article  PubMed  Google Scholar 

  • Vincent SB (1912) The function of the vibrissa in the behavior of the white rat. Behav Monogr 1:7–86

    Google Scholar 

  • Vogel J, Kuschinsky W (1996) Decreased heterogeneity of capillary plasma flow in the rat whisker-barrel cortex during functional hyperemia. J Cereb Blood Flow Metab 16:1300–1306

    Article  PubMed  CAS  Google Scholar 

  • Wallace MT, Ramachandran R, Stein BE (2004) A revised view of sensory cortical parcellation. Proc Natl Acad Sci USA 101:2167–2172

    Article  PubMed  CAS  Google Scholar 

  • Welker C, Sinha MM (1972) Somatotopic organization of SmII cerebral neocortex in albino rat. Brain Res 37:132–136

    Article  Google Scholar 

  • Welker WI (1964) Analysis of sniffing of the albino rat. Behaviour 22:223–244

    Article  Google Scholar 

  • Whitsel BL, Kelly EF, Quibrera M, Tommerdahl M, Li Y, Favorov OV, Xu M, Metz CB (2003) Time-dependence of SI RA neuron response to cutaneous flutter stimulation. Somatosens Mot Res 20:45–69

    Article  PubMed  CAS  Google Scholar 

  • Wong-Riley M (1979) Changes in the visual system of monocularly sutured or enucleated cats demonstrable with cytochrome oxidase histochemistry. Brain Res 171:11–28

    Article  PubMed  CAS  Google Scholar 

  • Woolsey CN, LeMessurier DH (1948) The pattern of cutaneous representation in the rat’s cerebral cortex. Fed Proc 7:137–138

    PubMed  CAS  Google Scholar 

  • Woolsey TA, Van der Loos H (1970) The structural organization of layer IV in the somatosensory region (S I) of mouse cerebral cortex. The description of a cortical field composed of discrete cytoarchitectonic units. Brain Res 17:205–242

    Article  PubMed  CAS  Google Scholar 

  • Zhang HQ, Zachariah MK, Coleman GT, Rowe MJ (2001) Hierarchical equivalence of somatosensory areas I and II for tactile processing in the cerebral cortex of the marmoset monkey. J Neurophysiol 85:1823–1835

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are indebted to Robert N.V. Sachdev for his instrumental role in the early phases of this study and for his many discussions on the subject. Michael Armstrong-James is thanked for his cogent advice. This research was supported by Public Health Service grants to Ford Ebner (NS-25907), the J.-F. Kennedy Center for Research in Human Development (HD-15052) and the Vanderbilt Vision Research Center (EY-08126).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Melzer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melzer, P., Champney, G.C., Maguire, M.J. et al. Rate code and temporal code for frequency of whisker stimulation in rat primary and secondary somatic sensory cortex. Exp Brain Res 172, 370–386 (2006). https://doi.org/10.1007/s00221-005-0334-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-005-0334-1

Keywords

Navigation