Skip to main content
Log in

Brain activity during visuomotor behavior triggered by arbitrary and spatially constrained cues: an fMRI study in humans

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Rule-based behavior associating nonspatial visual stimuli with learned responses is called arbitrary visuomotor mapping, an ability that enriches behavioral repertoire. To better understand the underlying neural correlates, the present functional magnetic resonance imaging (fMRI) study explored brain activity during visually informed movement involving two different types of cues and two different effectors. After being trained on the tasks, six healthy subjects performed right or left finger tapping tasks according to either arbitrary cues or spatially constrained cues. An event-related fMRI experiment was conducted on a 3-T MRI. The image data were analyzed with statistical parametric mapping. With the aid of the probabilistic architectonic map in the stereotaxic space, we identified three types of task-related brain activity: cue-selective, effector-selective, and nonselective. The left ventrolateral prefrontal cortex and the rostral part of the right dorsal premotor cortex (PMd) exhibited cue-selective activity, which was greater during the arbitrary condition than the spatially constrained condition. The left ventral prefrontal activity may reflect retrieval of visuomotor association from memory in arbitrary context. The rostral part of the left PMd showed nonselective activity while the caudal part of the PMd on each side showed conspicuous effector-selective activity to the contralateral movement. These findings suggest functional demarcation of the PMd between its rostral and dorsal parts during visuomotor mapping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Amunts K, Weiss PH, Mohlberg H, Pieperhoff P, Eickhoff S, Gurd JM, Marshall JC, Shah NJ, Fink GR, Zilles K (2004) Analysis of neural mechanisms underlying verbal fluency in cytoarchitectonically defined stereotaxic space—the roles of Brodmann areas 44 and 45. Neuroimage 22:42–56

    Article  PubMed  Google Scholar 

  • Asaad WF, Rainer G, Miller EK (2000) Task-specific neural activity in the primate prefrontal cortex. J Neurophysiol 84:451–459

    PubMed  CAS  Google Scholar 

  • Bunge SA, Kahn I, Wallis JD, Miller EK, Wagner AD (2003) Neural circuits subserving the retrieval and maintenance of abstract rules. J Neurophysiol 90:3419–3428

    Article  PubMed  Google Scholar 

  • Bushara KO, Hanakawa T, Immisch I, Toma K, Kansaku K, Hallett M (2003) Neural correlates of cross-modal binding. Nat Neurosci 6:190–195

    Article  PubMed  CAS  Google Scholar 

  • Dassonville P, Lewis SM, Zhu XH, Ugurbil K, Kim SG, Ashe J (2001) The effect of stimulus-response compatibility on cortical motor activation. Neuroimage 13:1–14

    Article  PubMed  CAS  Google Scholar 

  • Duncan J, Owen AM (2000) Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends Neurosci 23:475–483

    Article  PubMed  CAS  Google Scholar 

  • Eickhoff SB, Stephan KE, Mohlberg H, Grefkes C, Fink GR, Amunts K, Zilles K (2005) A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. Neuroimage 25:1325–1335

    Article  PubMed  Google Scholar 

  • Friston KJ, Holmes AP, Worsley KJ (1999) How many subjects constitute a study? NeuroImage 10:1–5

    Article  PubMed  CAS  Google Scholar 

  • Fujii N, Mushiake H, Tanji J (2000) Rostrocaudal distinction of the dorsal premotor area based on oculomotor involvement. J Neurophysiol 83:1764–1769

    PubMed  CAS  Google Scholar 

  • van Gelderen P, Ramsey NF, Liu G, Duyn JH, Frank JA, Weinberger DR, Moonen CT (1995) Three-dimensional functional magnetic resonance imaging of human brain on a clinical 1.5-T scanner. Proc Natl Acad Sci USA 92:6906–6910

    Article  PubMed  Google Scholar 

  • Godschalk M, Mitz AR, van Duin B, van der Burg H (1995) Somatotopy of monkey premotor cortex examined with microstimulation. Neurosci Res 23:269–279

    Article  PubMed  CAS  Google Scholar 

  • Grafton ST, Fagg AH, Arbib MA (1998a) Dorsal premotor cortex and conditional movement selection: a PET functional mapping study. J Neurophysiol 79:1092–1097

    PubMed  CAS  Google Scholar 

  • Grafton ST, Hazeltine E, Ivry RB (1998b) Abstract and effector-specific representations of motor sequences identified with PET. J Neurosci 18:9420–9428

    PubMed  CAS  Google Scholar 

  • Hanakawa T, Honda M, Sawamoto N, Okada T, Yonekura Y, Fukuyama H, Shibasaki H (2002) The role of rostral Brodmann area 6 in mental-operation tasks: an integrative neuroimaging approach. Cereb Cortex 12:1157–1170

    Article  PubMed  Google Scholar 

  • Hanakawa T, Immisch I, Toma K, Dimyan MA, van Gelderen P, Hallett M (2003) Functional properties of brain areas associated with motor execution and imagery. J Neurophysiol 89:989–1002

    Article  PubMed  Google Scholar 

  • Hanakawa T, Honda M, Hallett M (2004) Amodal imagery in rostral premotor areas. Behav Brain Sci 27:406–407

    Article  Google Scholar 

  • He SQ, Dum RP, Strick PL (1993) Topographic organization of corticospinal projections from the frontal lobe: motor areas on the lateral surface of the hemisphere. J Neurosci 13:952–980

    PubMed  CAS  Google Scholar 

  • Hoshi E, Tanji J (2000) Integration of target and body-part information in the premotor cortex when planning action. Nature 408:466–470

    Article  PubMed  CAS  Google Scholar 

  • Iacoboni M, Woods RP, Mazziotta JC (1998) Bimodal (auditory and visual) left frontoparietal circuitry for sensorimotor integration and sensorimotor learning. Brain 121:2135–2143

    Article  PubMed  Google Scholar 

  • Johnson PB, Ferraina S, Bianchi L, Caminiti R (1996) Cortical networks for visual reaching: physiological and anatomical organization of frontal and parietal lobe arm regions. Cereb Cortex 6:102–119

    Article  PubMed  CAS  Google Scholar 

  • Lu MT, Preston JB, Strick PL (1994) Interconnections between the prefrontal cortex and the premotor areas in the frontal lobe. J Comp Neurol 341:375–392

    Article  PubMed  CAS  Google Scholar 

  • Miller EK (2000) The prefrontal cortex and cognitive control. Nat Rev Neurosci 1:59–65

    Article  PubMed  CAS  Google Scholar 

  • Muller RA, Basho S (2004) Are nonlinguistic functions in “Broca’s area” prerequisites for language acquisition? FMRI findings from an ontogenetic viewpoint. Brain Lang 89:329–336

    Article  PubMed  Google Scholar 

  • Murray EA, Bussey TJ, Wise SP (2000) Role of prefrontal cortex in a network for arbitrary visuomotor mapping. Exp Brain Res 133:114–129

    Article  PubMed  CAS  Google Scholar 

  • Passingham RE, Toni I, Rushworth MF (2000) Specialisation within the prefrontal cortex: the ventral prefrontal cortex and associative learning. Exp Brain Res 133:103–113

    Article  PubMed  CAS  Google Scholar 

  • di Pellegrino G, Wise SP (1993) Visuospatial versus visuomotor activity in the premotor and prefrontal cortex of a primate. J Neurosci 13:1227–1243

    PubMed  CAS  Google Scholar 

  • Petrides M (1995) Impairments on nonspatial self-ordered and externally ordered working memory tasks after lesions of the mid-dorsal part of the lateral frontal cortex in the monkey. J Neurosci 15:359–375

    PubMed  CAS  Google Scholar 

  • Petrides M (2002) The mid-ventrolateral prefrontal cortex and active mnemonic retrieval. Neurobiol Learn Mem 78:528–538

    Article  PubMed  Google Scholar 

  • Picard N, Strick PL (2001) Imaging the premotor areas. Curr Opin Neurobiol 11:663–672

    Article  PubMed  CAS  Google Scholar 

  • Price CJ, Friston KJ (1997) Cognitive conjunction: a new approach to brain activation experiments. NeuroImage 5:261–270

    Article  PubMed  CAS  Google Scholar 

  • Rao SC, Rainer G, Miller EK (1997) Integration of what and where in the primate prefrontal cortex. Science 276:821–824

    Article  PubMed  CAS  Google Scholar 

  • Raos V, Franchi G, Gallese V, Fogassi L (2003) Somatotopic organization of the lateral part of area F2 (dorsal premotor cortex) of the macaque monkey. J Neurophysiol 89:1503–1518

    Article  PubMed  Google Scholar 

  • Rijntjes M, Dettmers C, Buchel C, Kiebel S, Frackowiak RS, Weiller C (1999) A blueprint for movement: functional and anatomical representations in the human motor system. J Neurosci 19:8043–8048

    PubMed  CAS  Google Scholar 

  • Schmahmann JD, Doyon J, Toga AW, Petrides M, Evans A (2000) MRI atlas of the human cerebellum. Academic Press, San Diego

    Google Scholar 

  • Toni I, Rushworth MF, Passingham RE (2001) Neural correlates of visuomotor associations. Spatial rules compared with arbitrary rules. Exp Brain Res 141:359–369

    Article  PubMed  CAS  Google Scholar 

  • Ungerleider LG, Courtney SM, Haxby JV (1998) A neural system for human visual working memory. Proc Natl Acad Sci USA 95:883–890

    Article  PubMed  CAS  Google Scholar 

  • Vaadia E, Benson DA, Hienz RD, Goldstein MH Jr (1986) Unit study of monkey frontal cortex: active localization of auditory and of visual stimuli. J Neurophysiol 56:934–952

    PubMed  CAS  Google Scholar 

  • Wallis JD, Miller EK (2003) From rule to response: neuronal processes in the premotor and prefrontal cortex. J Neurophysiol 90:1790–1806

    Article  PubMed  Google Scholar 

  • Wise SP, Murray EA (2000) Arbitrary associations between antecedents and actions. Trends Neurosci 23:271–276

    Article  PubMed  CAS  Google Scholar 

  • Wise SP, di Pellegrino G, Boussaoud D (1996) The premotor cortex and nonstandard sensorimotor mapping. Can J Physiol Pharmacol 74:469–482

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Devera G. Schoenberg, MS, for her skilful editing. This work was in part supported by a National Institute of Neurological Disorders and Stroke Intramural Competitive Fellowship Award and also at a writing stage by a Grant-in-Aid on Fundamental Research (C) (17500210) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan to T.H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Hallett.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanakawa, T., Honda, M., Zito, G. et al. Brain activity during visuomotor behavior triggered by arbitrary and spatially constrained cues: an fMRI study in humans. Exp Brain Res 172, 275–282 (2006). https://doi.org/10.1007/s00221-005-0336-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-005-0336-z

Keywords

Navigation