Skip to main content
Log in

ERP correlates of anticipatory attention: spatial and non-spatial specificity and relation to subsequent selective attention

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Brain-based models of visual attention hypothesize that attention-related benefits afforded to imperative stimuli occur via enhancement of neural activity associated with relevant spatial and non-spatial features. When relevant information is available in advance of a stimulus, anticipatory deployment processes are likely to facilitate allocation of attention to stimulus properties prior to its arrival. The current study recorded EEG from humans during a centrally-cued covert attention task. Cues indicated relevance of left or right visual field locations for an upcoming motion or orientation discrimination. During a 1 s delay between cue and S2, multiple attention-related events occurred at frontal, parietal and occipital electrode sites. Differences in anticipatory activity associated with the non-spatial task properties were found late in the delay, while spatially-specific modulation of activity occurred during both early and late periods and continued during S2 processing. The magnitude of anticipatory activity preceding the S2 at frontal scalp sites (and not occipital) was predictive of the magnitude of subsequent selective attention effects on the S2 event-related potentials observed at occipital electrodes. Results support the existence of multiple anticipatory attention-related processes, some with differing specificity for spatial and non-spatial task properties, and the hypothesis that levels of activity in anterior areas are important for effective control of subsequent S2 selective attention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bendixen A, Grimm S, Schroger E (2005) Human auditory event-related potentials predict duration judgments. Neurosci Lett 383:284–288

    Article  PubMed  CAS  Google Scholar 

  • Caplan JB, Luks TL, Simpson GV, Glaholt M, McIntosh AR (2006) Parallel networks operating across attentional deployment and motion processing: a multi-seed partial least squares fMRI study. Neuroimage 29:1192–1202

    Article  PubMed  Google Scholar 

  • Chawla D, Rees G, Friston KJ (1999) The physiological basis of attentional modulation in extrastriate visual areas. Nat Neurosci 2:671–676

    Article  PubMed  CAS  Google Scholar 

  • Chelazzi L, Duncan J, Miller EK, Desimone R (1998) Responses of neurons in inferior temporal cortex during memory-guided visual search. J Neurophysiol 80:2918–2940

    PubMed  CAS  Google Scholar 

  • Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 3:201–215

    Article  PubMed  CAS  Google Scholar 

  • Corbetta M, Akbudak E, Conturo TE, Snyder AZ, Ollinger JM, Drury HA, Linenweber MR, Petersen SE, Raichle ME, Van Essen DC, Shulman GL (1998) A common network of functional areas for attention and eye movements. Neuron 21:761–773

    Article  PubMed  CAS  Google Scholar 

  • Desimone R, Duncan J (1995) Neural mechanisms of selective visual attention. Annu Rev Neurosci 18:193–222

    Article  PubMed  CAS  Google Scholar 

  • Doallo S, Lorenzo-Lopez L, Vizoso C, Rodriguez Holguin S, Amenedo E, Bara S, Cadaveira F (2004) The time course of the effects of central and peripheral cues on visual processing: an event-related potentials study. Clin Neurophysiol 115:199–210

    Article  PubMed  CAS  Google Scholar 

  • Driver J, Frith C (2000) Shifting baselines in attention research. Nat Rev Neurosci 1:147–148

    Article  PubMed  CAS  Google Scholar 

  • Eimer M (1993) Spatial cueing, sensory gating and selective response preparation: an ERP study on visuo-spatial orienting. Electroencephalogr Clin Neurophysiol 88:408–420

    Article  PubMed  CAS  Google Scholar 

  • Eimer M (1995) Event-related potential correlates of transient attention shifts to color and location. Biol Psychol 41:167–182

    Article  PubMed  CAS  Google Scholar 

  • Eimer M (1996) The N2pc component as an indicator of attentional selectivity. Electroencephalogr Clin Neurophysiol 99:225–234

    Article  PubMed  CAS  Google Scholar 

  • Eimer M (2000) The time course of spatial orienting elicited by central and peripheral cues: evidence from event-related brain potentials. Biol Psychol 53:253–258

    Article  PubMed  CAS  Google Scholar 

  • Eimer M, van Velzen J, Driver J (2002) Cross-modal interactions between audition, touch, and vision in endogenous spatial attention: ERP evidence on preparatory states and sensory modulations. J Cogn Neurosci 14:254–271

    Article  PubMed  Google Scholar 

  • Giesbrecht B, Woldorff MG, Song AW, Mangun GR (2003) Neural mechanisms of top–down control during spatial and feature attention. Neuroimage 19:496–512

    Article  PubMed  CAS  Google Scholar 

  • Giesbrecht B, Weissman DH, Woldorff MG, Mangun GR (2006) Pre-target activity in visual cortex predicts behavioral performance on spatial and feature attention tasks. Brain Res 1080:63–72

    Article  PubMed  CAS  Google Scholar 

  • Green JJ, McDonald JJ (2006) An event-related potential study of supramodal attentional control and crossmodal attention effects. Psychophysiology 43:161–171

    Article  PubMed  Google Scholar 

  • Grent-’t-Jong T, Woldorff MG (2007) Timing and sequence of brain activity in top-down control of visual-spatial attention. PLoS Biol 5:e12

    Article  PubMed  Google Scholar 

  • Grosbras MH, Paus T (2002) Transcranial magnetic stimulation of the human frontal eye field: effects on visual perception and attention. J Cogn Neurosci 14:1109–1120

    Article  PubMed  Google Scholar 

  • Harter MR, Miller SL, Price NJ, LaLonde ME, Keyes AL (1989) Neural processes involved in directing attention. J Cogn Neurosci 1:223–237

    Article  Google Scholar 

  • Hayden BY, Gallant JL (2005) Time course of attention reveals different mechanisms for spatial and feature-based attention in area V4. Neuron 47:637–643

    Article  PubMed  CAS  Google Scholar 

  • Hillyard SA, Vogel EK, Luck SJ (1998) Sensory gain control (amplification) as a mechanism of selective attention: electrophysiological and neuroimaging evidence. Philos Trans R Soc Lond B Biol Sci 353:1257–1270

    Article  PubMed  CAS  Google Scholar 

  • Hommel B, Pratt J, Colzato L, Godijn R (2001) Symbolic control of visual attention. Psychol Sci 12:360–365

    Article  PubMed  CAS  Google Scholar 

  • Hopf JM, Mangun GR (2000) Shifting visual attention in space: an electrophysiological analysis using high spatial resolution mapping. Clin Neurophysiol 111:1241–1257

    Article  PubMed  CAS  Google Scholar 

  • Hopf JM, Boelmans K, Schoenfeld MA, Luck SJ, Heinze HJ (2004) Attention to features precedes attention to locations in visual search: evidence from electromagnetic brain responses in humans. J Neurosci 24:1822–1832

    Article  PubMed  CAS  Google Scholar 

  • Hopfinger JB, Mangun GR (1998) Reflexive attention modulates processing of visual stimuli in human extrastriate cortex. Psychol Sci 9:441–447

    Article  Google Scholar 

  • Hopfinger JB, Buonocore MH, Mangun GR (2000) The neural mechanisms of top-down attentional control. Nat Neurosci 3:284–291

    Article  PubMed  CAS  Google Scholar 

  • Howell DC (1997) Statistical methods in psychology. Wadsworth, Belmont, CA

  • Jongen EM, Smulders FT, van Breukelen GJ (2006) Varieties of attention in neutral trials: linking RT to ERPs and EEG frequencies. Psychophysiology 43:113–125

    Article  PubMed  Google Scholar 

  • Kastner S, Pinsk MA, De Weerd P, Desimone R, Ungerleider LG (1999) Increased activity in human visual cortex during directed attention in the absence of visual stimulation. Neuron 22:751–761

    Article  PubMed  CAS  Google Scholar 

  • Kingstone A, Smilek D, Ristic J, Friesen CK, Eastwood JD (2003) Attention, researchers! It is time to take a look at the real world. Curr Dir Psychol Sci 12:176–180

    Article  Google Scholar 

  • Liu T, Slotnick SD, Serences JT, Yantis S (2003) Cortical mechanisms of feature-based attentional control. Cereb Cortex 13:1334–1343

    Article  PubMed  Google Scholar 

  • Luck SJ, Hillyard SA (1994) Electrophysiological correlates of feature analysis during visual search. Psychophysiology 31:291–308

    Article  PubMed  CAS  Google Scholar 

  • Luck SJ, Chelazzi L, Hillyard SA, Desimone R (1997) Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. J Neurophysiol 77:24–42

    PubMed  CAS  Google Scholar 

  • Luks TL, Simpson GV (2004) Preparatory deployment of attention to motion activates higher-order motion-processing brain regions. Neuroimage 22:1515–1522

    Article  PubMed  Google Scholar 

  • Luks TL, Simpson GV, Feiwell RJ, Miller WL (2002) Evidence for anterior cingulate cortex involvement in monitoring preparatory attentional set. Neuroimage 17:792–802

    Article  PubMed  Google Scholar 

  • Luks TL, Simpson GV, Dale CL, Hough MG (2007) Preparatory allocation of attention and adjustments in conflict processing. Neuroimage 35:949–958

    Article  PubMed  Google Scholar 

  • Macaluso E, Eimer M, Frith CD, Driver J (2003) Preparatory states in crossmodal spatial attention: spatial specificity and possible control mechanisms. Exp Brain Res 149:62–74

    PubMed  CAS  Google Scholar 

  • Macar F, Vidal F, Casini L (1999) The supplementary motor area in motor and sensory timing: evidence from slow brain potential changes. Exp Brain Res 125:271–280

    Article  PubMed  CAS  Google Scholar 

  • Mangun GR, Hillyard SA (1991) Modulations of sensory-evoked brain potentials indicate changes in perceptual processing during visual-spatial priming. J Exp Psychol Hum Percept Perform 17:1057–1074

    Article  PubMed  CAS  Google Scholar 

  • Maunsell JH, Treue S (2006) Feature-based attention in visual cortex. Trends Neurosci 29:317–322

    Article  PubMed  CAS  Google Scholar 

  • Miller EK, Cohen JD (2001) An integrative theory of prefrontal cortex function. Annu Rev Neurosci 24:167–202

    Article  PubMed  CAS  Google Scholar 

  • Miller EK, Erickson CA, Desimone R (1996) Neural mechanisms of visual working memory in prefrontal cortex of the macaque. J Neurosci 16:5154–5167

    PubMed  CAS  Google Scholar 

  • Moore T, Armstrong KM (2003) Selective gating of visual signals by microstimulation of frontal cortex. Nature 421:370–373

    Article  PubMed  CAS  Google Scholar 

  • Moore T, Armstrong KM, Fallah M (2003) Visuomotor origins of covert spatial attention. Neuron 40:671–683

    Article  PubMed  CAS  Google Scholar 

  • Motter BC (1994) Neural correlates of attentive selection for color or luminance in extrastriate area V4. J Neurosci 14:2178–2189

    PubMed  CAS  Google Scholar 

  • Nobre AC, Gitelman DR, Dias EC, Mesulam MM (2000a) Covert visual spatial orienting and saccades: overlapping neural systems. Neuroimage 11:210–216

    Article  PubMed  CAS  Google Scholar 

  • Nobre AC, Sebestyen GN, Miniussi C (2000b) The dynamics of shifting visuospatial attention revealed by event-related potentials. Neuropsychologia 38:964–974

    Article  PubMed  CAS  Google Scholar 

  • Padilla ML, Wood RA, Hale LA, Knight RT (2006) Lapses in a prefrontal-extrastriate preparatory attention network predict mistakes. J Cogn Neurosci 18:1477–1487

    Article  PubMed  Google Scholar 

  • Pfeuty M, Ragot R, Pouthas V (2005) Relationship between CNV and timing of an upcoming event. Neurosci Lett 382:106–111

    Article  PubMed  CAS  Google Scholar 

  • Praamstra P, Boutsen L, Humphreys GW (2005) Frontoparietal control of spatial attention and motor intention in human EEG. J Neurophysiol 94:764–774

    Article  PubMed  Google Scholar 

  • Rainer G, Asaad WF, Miller EK (1998) Selective representation of relevant information by neurons in the primate prefrontal cortex. Nature 393:577–579

    Article  PubMed  CAS  Google Scholar 

  • Recanzone GH, Wurtz RH, Schwarz U (1997) Responses of MT and MST neurons to one and two moving objects in the receptive field. J Neurophysiol 78:2904–2915

    PubMed  CAS  Google Scholar 

  • Reynolds JH, Chelazzi L, Desimone R (1999) Competitive mechanisms subserve attention in macaque areas V2 and V4. J Neurosci 19:1736–1753

    PubMed  CAS  Google Scholar 

  • Schall JD (2004) On the role of frontal eye field in guiding attention and saccades. Vision Res 44:1453–1467

    Article  PubMed  Google Scholar 

  • Sereno MI, Pitzalis S, Martinez A (2001) Mapping of contralateral space in retinotopic coordinates by a parietal cortical area in humans. Science 294:1350–1354

    Article  PubMed  CAS  Google Scholar 

  • Shulman GL, d’Avossa G, Tansy AP, Corbetta Mh (2002) Two attentional processes in the parietal lobe. Cereb Cortex 12:1124–1131

    Article  PubMed  Google Scholar 

  • Silver MA, Ress D, Heeger DJ (2005) Topographic maps of visual spatial attention in human parietal cortex. J Neurophysiol 94:1358–1371

    Article  PubMed  Google Scholar 

  • Simpson GV, Dale CL, Luks TL, Ritter W, Miller W, Foxe JJ (2006) Rapid targeting followed by sustained deployment of visual spatial attention. Neuroreport 17:1595–1599

    Article  PubMed  Google Scholar 

  • Simson R, Vaughn HG Jr, Ritter W (1977) The scalp topography of potentials in auditory and visual discrimination tasks. Electroencephalogr Clin Neurophysiol 42:528–535

    Article  PubMed  CAS  Google Scholar 

  • Slagter HA, Kok A, Mol N, Kenemans JL (2005) Spatio-temporal dynamics of top-down control: directing attention to location and/or color as revealed by ERPs and source modeling. Brain Res Cogn Brain Res 22:333–348

    Article  PubMed  Google Scholar 

  • Sun FT, Miller LM, D’Esposito M (2005) Measuring temporal dynamics of functional networks using phase spectrum of fMRI data. Neuroimage 28:227–237

    Article  PubMed  Google Scholar 

  • Talsma D, Slagter HA, Nieuwenhuis S, Hage J, Kok A (2005) The orienting of visuospatial attention: an event-related brain potential study. Brain Res Cogn Brain Res 25:117–129

    Article  PubMed  Google Scholar 

  • Thut G, Nietzel A, Brandt SA, Pascual-Leone A (2006) Alpha-band electroencephalographic activity over occipital cortex indexes visuospatial attention bias and predicts visual target detection. J Neurosci 26:9494–9502

    Article  PubMed  CAS  Google Scholar 

  • Tipples J (2002) Eye gaze is not unique: automatic orienting in response to uninformative arrows. Psychon Bull Rev 9:314–318

    PubMed  Google Scholar 

  • Treue S, Maunsell JH (1996) Attentional modulation of visual motion processing in cortical areas MT and MST. Nature 382:539–541

    Article  PubMed  CAS  Google Scholar 

  • van Velzen J, Eimer M (2003) Early posterior ERP components do not reflect the control of attentional shifts toward expected peripheral events. Psychophysiology 40:827–831

    Article  PubMed  Google Scholar 

  • van Velzen J, Forster B, Eimer M (2002) Temporal dynamics of lateralized ERP components elicited during endogenous attentional shifts to relevant tactile events. Psychophysiology 39:874–878

    Article  PubMed  Google Scholar 

  • Vandenberghe R, Gitelman DR, Parrish TB, Mesulam MM (2001) Functional specificity of superior parietal mediation of spatial shifting. Neuroimage 14:661–673

    Article  PubMed  CAS  Google Scholar 

  • Walter WG, Cooper R, Aldridge VJ, McCallum WC, Winter AL (1964) Contingent negative variation: an electric sign of sensorimotor association and expectancy in the human brain. Nature 203:380–384

    Article  PubMed  CAS  Google Scholar 

  • Woldorff MG, Hazlett CJ, Fichtenholtz HM, Weissman DH, Dale AM, Song AW (2004) Functional parcellation of attentional control regions of the brain. J Cogn Neurosci 16:149–165

    Article  PubMed  Google Scholar 

  • Womelsdorf T, Fries P, Mitra PP, Desimone R (2006) Gamma-band synchronization in visual cortex predicts speed of change detection. Nature 439:733–736

    Article  PubMed  CAS  Google Scholar 

  • Worden MS, Foxe JJ, Wang N, Simpson GV (2000) Anticipatory biasing of visuospatial attention indexed by retinotopically specific alpha-band electroencephalography increases over occipital cortex. J Neurosci 20:RC63

    PubMed  CAS  Google Scholar 

  • Yantis S, Schwarzbach J, Serences JT, Carlson RL, Steinmetz MA, Pekar JJ, Courtney SM (2002) Transient neural activity in human parietal cortex during spatial attention shifts. Nat Neurosci 5:995–1002

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from NIH (NS027900 and NS045171). We thank Daniel Handwerker, William L. Miller, and Norman Wang for their contributions to analyses of these data. Data were collected at Albert Einstein College of Medicine, New York, NY.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corby L. Dale.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dale, C.L., Simpson, G.V., Foxe, J.J. et al. ERP correlates of anticipatory attention: spatial and non-spatial specificity and relation to subsequent selective attention. Exp Brain Res 188, 45–62 (2008). https://doi.org/10.1007/s00221-008-1338-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-008-1338-4

Keywords

Navigation