Skip to main content
Log in

The effects of task instructions on pro and antisaccade performance

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

In the antisaccade task participants are required to overcome the strong tendency to saccade towards a sudden onset target, and instead make a saccade to the mirror image location. The task thus provides a powerful tool with which to study the cognitive processes underlying goal directed behaviour, and has become a widely used index of “disinhibition” in a range of clinical populations. Across two experiments we explored the role of top-down strategic influences on antisaccade performance by varying the instructions that participants received. Instructions to delay making a response resulted in a significant increase in correct antisaccade latencies and reduction in erroneous prosaccades towards the target. Instructions to make antisaccades as quickly as possible resulted in faster correct responses, whereas instructions to be as spatially accurate as possible increased correct antisaccade latencies. Neither of these manipulations resulted in a significant change in error rate. In a second experiment, participants made fewer errors in delayed pro and antisaccade tasks than in a standard antisaccade task. The implications of these results for current models of antisaccade performance, and the interpretation of antisaccade deficits in clinical populations are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Carpenter RHS (1981) Oculomotor procrastination. In: Fisher DF, Monty RA, Senders JW (eds) Eye movements: cognition and visual perception. Lawrence Erlbaum, Hillsdale, UK, pp 237–246

    Google Scholar 

  • Carpenter RHS, Williams MLL (1995) Neural computation of log likelihood in the control of saccadic eye movements. Nature 377:59–62

    Article  PubMed  CAS  Google Scholar 

  • Christensen BK, Girard TA, Benjamin AS, Vidailhet P (2006) Evidence for impaired mnemonic strategy use among patients with schizophrenia using the part-list cuing paradigm. Schizophrenia Res 85:1–11

    Article  Google Scholar 

  • Evdokimidis I, Smyrnis N, Constantinidis TS, Stefanis NC, Avramopoulos D, Paximadis C, Theleritis C, Efstratidis C, Kastrinakis G, Stefanis CN (2002) The antisaccade task in a sample of 2,006 young men. I. Normal population characteristics. Exp Brain Res 147:45–52

    Article  PubMed  CAS  Google Scholar 

  • Everling S, Fischer B (1998) The antisaccade: a review of basic research and clinical studies. Neuropsychologia 36:885–899

    Article  PubMed  CAS  Google Scholar 

  • Everling S, Dorris MC, Klein RM, Munoz DP (1999) Role of primate superior colliculus in preparation and execution of anti-saccades and pro-saccades. J Neurosci 19:2740–2754

    PubMed  CAS  Google Scholar 

  • Godijn R, Theeuwes J (2002) Programming of endogenous and exogenous saccades: evidence for a competitive integration model. J Exp Psychol Human Perception Perform 28:1039–1054

    Article  Google Scholar 

  • Guyader N, Malsert J, Marendaz C (2008) Having to identify a target reduces latencies in prosaccades but not in antisaccades. Psychol Res. doi:10.1007/s00426-008-0218-7

  • Hallett PE, Adams BD (1980) The predictability of saccadic latency in a novel voluntary oculomotor task. Vision Res 20:329–339

    Article  PubMed  CAS  Google Scholar 

  • Hanes DP, Schall JD (1996) Neural control of voluntary movement initiation. Science 274:427–430

    Article  PubMed  CAS  Google Scholar 

  • Hutton SB (2008) Cognitive control of saccadic eye movements. Brain Cognition 68:327–340

    Article  CAS  Google Scholar 

  • Hutton SB, Ettinger U (2006) The antisaccade task as a research tool in psychopathology: a critical review. Psychophysiology 43:302–313

    Article  PubMed  Google Scholar 

  • Hutton SB, Puri BK, Duncan LJ, Robbins TW, Barnes TR, Joyce EM (1998) Executive function in first-episode schizophrenia. Psychol Med 28:463–473

    Article  PubMed  CAS  Google Scholar 

  • Hutton S, Joyce E, Barnes T, Kennard C (2002) Saccadic distractibility in first-episode schizophrenia. Neuropsychologia 40:1729–1736

    Article  PubMed  CAS  Google Scholar 

  • Hutton SB, Huddy V, Barnes TR, Robbins TW, Crawford TJ, Kennard C, Joyce EM (2004) The relationship between antisaccades, smooth pursuit, and executive dysfunction in first-episode schizophrenia. Biol Psychiatry 15:553–559

    Article  Google Scholar 

  • Krauzlis RJ, Basso MA, Wurtz RH (1997) Shared motor error for multiple eye movements. Science 276:1693–1695

    Article  PubMed  CAS  Google Scholar 

  • Machado L, Rafal RD (2000) Strategic control over saccadic eye movements: studies of the fixation offset effect. Percept Psychophys 62:1236–1242

    PubMed  CAS  Google Scholar 

  • Massen C (2004) Parallel programming of exogenous and endogenous components in the antisaccade task. Quart J Exp Psychol A 57:475–498

    Google Scholar 

  • Meyniel C, Rivaud-Péchoux S, Damier P, Gaymard B (2005) Saccade impairments in patients with fronto-temporal dementia. J Neurol Neurosurg Psychiatry 76:1581–1584

    Article  PubMed  CAS  Google Scholar 

  • Mokler A, Fischer B (1999) The recognition and correction of involuntary prosaccades in an antisaccade task. Exp Brain Res 125:511–516

    Article  PubMed  CAS  Google Scholar 

  • Mosimann U, Felblinger J, Colloby S, Müri R (2004) Verbal instructions and top-down saccade control. Exp Brain Res 159:263–267

    Article  PubMed  CAS  Google Scholar 

  • Munoz D, Everling S (2004) Look away: the anti-saccade task and the voluntary control of eye movement. Nature Rev Neurosci 5:218–228

    Article  CAS  Google Scholar 

  • Munoz D, Fecteau J (2002) Vying for dominance: dynamic interactions control visual fixation and saccadic initiation in the superior colliculus. Prog Brain Res 140:3–19

    Article  PubMed  Google Scholar 

  • Munoz DP, Istvan PJ (1998) Lateral inhibitory interactions in the intermediate layers of the monkey superior colliculus. J Neurophysiol 79:1193–1209

    PubMed  CAS  Google Scholar 

  • Munoz DP, Wurtz RH (1993) Fixation cells in monkey superior colliculus. II. Reversible activation and deactivation. J Neurophysiol 70:576–589

    PubMed  CAS  Google Scholar 

  • Reuter B, Kathmann N (2004) Using saccade tasks as a tool to analyze executive dysfunctions in schizophrenia. Acta Psychol 115:255–269

    Article  Google Scholar 

  • Reuter B, Rakusan L, Kathmann N (2005) Poor antisaccade performance in schizophrenia: an inhibition deficit? Psychiatry Res 135:1–10

    Article  PubMed  Google Scholar 

  • Reuter B, Jager M, Bottlender R, Kathmann N (2007) Impaired action control in schizophrenia: the role of volitional saccade initiation. Neuropsychologia 45:1840–1848

    Article  PubMed  Google Scholar 

  • Roberts RJ, Hager LD, Heron C (1994) Prefrontal cognitive processes: working memory and inhibition in the antisaccade task. J Exp Psychol Gen 123:374–393

    Article  Google Scholar 

  • Rycroft N, Hutton SB, Rusted JM (2006) The antisaccade task as an index of sustained goal activation in working memory: modulation by nicotine. Psychopharmacology (Berl) 188:521–529

    Article  CAS  Google Scholar 

  • Smyrnis N, Evdokimidis I, Stefanis NC, Avramopoulos D, Constantinidis TS, Stavropoulos A, Stefanis CN (2003) Antisaccade performance of 1,273 men: effects of schizotypy, anxiety, and depression. J Abnormal Psychol 112:403–414

    Article  Google Scholar 

  • Tatler B, Hutton S (2007) Trial by trial effects in the antisaccade task. Exp Brain Res 179:387–396

    Article  PubMed  Google Scholar 

  • Taylor AJG, Hutton SB (2007) The effects of individual differences on cued antisaccade performance. J Eye Movement Res 1(5):1–9

    Google Scholar 

  • Trappenberg TP, Dorris MC, Munoz DP, Klein RM (2001) A model of saccade initiation based on the competitive integration of exogenous and endogenous signals in the superior colliculus. J Cognitive Neurosci 13:256–271

    Article  CAS  Google Scholar 

  • Trottier L, Pratt J (2005) Visual processing of targets can reduce saccadic latencies. Vision Res 45:1349–1354

    Article  PubMed  Google Scholar 

  • Van Koningsbruggen MG, Rafal RD (2008) Control of oculomotor reflexes: independent effects of strategic and automatic preparation. Exp Brain Res 192:761–768

    Article  PubMed  Google Scholar 

  • Walker R, McSorley E (2006) The parallel programming of voluntary and reflexive saccades. Vision Res 46:2082–2093

    Article  PubMed  Google Scholar 

  • Walker R, Husain M, Hodgson TL, Harrison J, Kennard C (1998) Saccadic eye movement and working memory deficits following damage to human prefrontal cortex. Neuropsychologia 36:1149–1151

    Article  Google Scholar 

  • Walker R, Walker D, Husain M, Kennard C (2000) Control of voluntary and reflexive saccades. Exp Brain Res 130:540–544

    Article  PubMed  CAS  Google Scholar 

  • Wenban-Smith MG, Findlay JM (1991) Express saccades: is there a separate population in humans? Exp Brain Res 87:218–222

    Article  PubMed  CAS  Google Scholar 

  • Wickelgren WA (1977) Speed-accuracy trade off and information processing dynamics. Acta Psychol 4:67–85

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sam B. Hutton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taylor, A.J.G., Hutton, S.B. The effects of task instructions on pro and antisaccade performance. Exp Brain Res 195, 5–14 (2009). https://doi.org/10.1007/s00221-009-1750-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-009-1750-4

Keywords

Navigation