Skip to main content
Log in

Reactive grip force control in persons with cerebellar stroke: effects on ipsilateral and contralateral hand

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

This study investigates the cerebellar contribution to reactive grip control by examining differences between (22–48 years) subjects with focal cerebellar lesion due to ischaemic stroke (CL) and healthy subjects (HS). The subjects used a pinch grip to grasp and restrain an instrumented handle from moving when it was subject to unpredictable load forces of different rates (2, 4, 8, 32 N/s) or amplitudes (1, 2, 4 N). The hand ipsilateral to the lesion of the cerebellar subjects showed delayed and more variable response latencies, e.g., 278 ± 162 ms for loads delivered at 2 N/s, compared to HS 180 ± 53 ms (P = 0.005). The CL also used a higher pre-load grip force with the ipsilateral hand, 1.6 ± 0.8 N, than the HS, 1.3 ± 0.6 N (P = 0.017). In addition, the contralateral hand in subjects with unilateral cerebellar stroke showed a delayed onset of the grip response compared to HS. Cerebellar lesions thus impair the reactive grip control both in the ipsilateral and contralateral hand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Babin-Ratte S, Sirigu A, Gilles M et al (1999) Impaired anticipatory finger grip-force adjustments in a case of cerebellar degeneration. Exp Brain Res 128(1–2):81–85

    Article  CAS  PubMed  Google Scholar 

  • Bastian AJ (2006) Learning to predict the future: the cerebellum adapts feedforward movement control. Curr Opin Neurobiol 16(6):645–649

    Article  CAS  PubMed  Google Scholar 

  • Blakemore SJ, Sirigu A (2003) Action prediction in the cerebellum and in the parietal lobe. Exp Brain Res 153(2):239–245

    Article  PubMed  Google Scholar 

  • Brandauer B, Hermsdorfer J, Beck A et al (2008) Impairments of prehension kinematics and grasping forces in patients with cerebellar degeneration and the relationship to cerebellar atrophy. Clin Neurophysiol 119(11):2528–2537

    Article  CAS  PubMed  Google Scholar 

  • Cole KJ, Rotella DL (2001) Old age affects fingertip forces when restraining an unpredictably loaded object. Exp Brain Res 136(4):535–542

    Article  CAS  PubMed  Google Scholar 

  • Cui SZ, Li EZ, Zang YF et al (2000) Both sides of human cerebellum involved in preparation and execution of sequential movements. Neuroreport 11(17):3849–3853

    Article  CAS  PubMed  Google Scholar 

  • Danion F (2007) The contribution of non-digital afferent signals to grip force adjustments evoked by brisk unloading of the arm or the held object. Clin Neurophysiol 118(1):146–154

    Article  CAS  PubMed  Google Scholar 

  • Ebner TJ, Pasalar S (2008) Cerebellum predicts the future motor state. Cerebellum 7(4):583–588

    Article  PubMed  Google Scholar 

  • Ehrsson HH, Fagergren A, Ehrsson GO et al (2007) Holding an object: neural activity associated with fingertip force adjustments to external perturbations. J Neurophysiol 97(2):1342–1352

    Article  PubMed  Google Scholar 

  • Fellows SJ, Ernst J, Schwarz M et al (2001) Precision grip deficits in cerebellar disorders in man. Clin Neurophysiol 112(10):1793–1802

    Article  CAS  PubMed  Google Scholar 

  • Flanagan JR, Bowman MC, Johansson RS (2006) Control strategies in object manipulation tasks. Curr Opin Neurobiol 16(6):650–659

    Article  CAS  PubMed  Google Scholar 

  • Häger-Ross C, Johansson RS (1996) Nondigital afferent input in reactive control of fingertip forces during precision grip. Exp Brain Res 110(1):131–141

    PubMed  Google Scholar 

  • Häger-Ross C, Cole KJ, Johansson RS (1996) Grip-force responses to unanticipated object loading: load direction reveals body- and gravity-referenced intrinsic task variables. Exp Brain Res 110(1):142–150

    PubMed  Google Scholar 

  • Higuchi S, Imamizu H, Kawato M (2007) Cerebellar activity evoked by common tool-use execution and imagery tasks: an fMRI study. Cortex 43(3):350–358

    Article  PubMed  Google Scholar 

  • Immisch I, Quintern J, Straube A (2003) Unilateral cerebellar lesions influence arm movements bilaterally. Neuroreport 14(6):837–840

    Article  PubMed  Google Scholar 

  • Johansson RS (1998) Sensory input and control of grip. Novartis Found Symp 218:45–59 (discussion 59–63)

    Article  CAS  PubMed  Google Scholar 

  • Johansson RS, Westling G (1984) Roles of glabrous skin receptors and sensorimotor memory in automatic control of precision grip when lifting rougher or more slippery objects. Exp Brain Res 56(3):550–564

    Article  CAS  PubMed  Google Scholar 

  • Johansson RS, Häger C, Bäckström L (1992a) Somatosensory control of precision grip during unpredictable pulling loads. III. Impairments during digital anesthesia. Exp Brain Res 89(1):204–213

    Article  CAS  PubMed  Google Scholar 

  • Johansson RS, Häger C, Riso R (1992b) Somatosensory control of precision grip during unpredictable pulling loads. II. Changes in load force rate. Exp Brain Res 89(1):192–203

    Article  CAS  PubMed  Google Scholar 

  • Johansson RS, Riso R, Häger C et al (1992c) Somatosensory control of precision grip during unpredictable pulling loads. I. Changes in load force amplitude. Exp Brain Res 89(1):181–191

    Article  CAS  PubMed  Google Scholar 

  • Kawato M, Kuroda T, Imamizu H et al (2003) Internal forward models in the cerebellum: fMRI study on grip force and load force coupling. Prog Brain Res 142:171–188

    Article  PubMed  Google Scholar 

  • Lynnette AJ, Lederman SJ (2006) Human hand function. Oxford University Press, New York

    Google Scholar 

  • Milner TE, Franklin DW, Imamizu H et al (2007) Central control of grasp: manipulation of objects with complex and simple dynamics. Neuroimage 36(2):388–395

    Article  PubMed  Google Scholar 

  • Nowak DA, Hermsdorfer J (2005) Grip force behavior during object manipulation in neurological disorders: toward an objective evaluation of manual performance deficits. Mov Disord 20(1):11–25

    Article  PubMed  Google Scholar 

  • Nowak DA, Hermsdorfer J, Marquardt C et al (2002) Grip and load force coupling during discrete vertical arm movements with a grasped object in cerebellar atrophy. Exp Brain Res 145(1):28–39

    Article  PubMed  Google Scholar 

  • Nowak DA, Hermsdorfer J, Rost K et al (2004) Predictive and reactive finger force control during catching in cerebellar degeneration. Cerebellum 3(4):227–235

    Article  PubMed  Google Scholar 

  • Nowak DA, Topka H, Timmann D et al (2007) The role of the cerebellum for predictive control of grasping. Cerebellum 6(1):7–17

    Article  PubMed  Google Scholar 

  • Nowak DA, Hufnagel A, Ameli M et al (2009) Interhemispheric transfer of predictive force control during grasping in cerebellar disorders. Cerebellum 8(2):108–115

    Article  PubMed  Google Scholar 

  • Rost K, Nowak DA, Timmann D et al (2005) Preserved and impaired aspects of predictive grip force control in cerebellar patients. Clin Neurophysiol 116(6):1405–1414

    Article  PubMed  Google Scholar 

  • Serrien DJ, Wiesendanger M (1999) Grip-load force coordination in cerebellar patients. Exp Brain Res 128(1–2):76–80

    Article  CAS  PubMed  Google Scholar 

  • Sosnoff JJ, Valantine AD, Newell KM (2006) Independence between the amount and structure of variability at low force levels. Neurosci Lett 392(3):165–169

    Article  CAS  PubMed  Google Scholar 

  • Witney AG, Wing A, Thonnard JL et al (2004) The cutaneous contribution to adaptive precision grip. Trends Neurosci 27(10):637–643

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank all subjects who participated in the study. Financial support was provided from Vårdalstiftelsen which is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charlotte Häger-Ross.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anens, E., Kristensen, B. & Häger-Ross, C. Reactive grip force control in persons with cerebellar stroke: effects on ipsilateral and contralateral hand. Exp Brain Res 203, 21–30 (2010). https://doi.org/10.1007/s00221-010-2203-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-010-2203-9

Keywords

Navigation