Skip to main content
Log in

Fundamental differences in change detection between vision and audition

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

We compared auditory change detection to visual change detection using closely matched stimuli and tasks in the two modalities. On each trial, participants were presented with a test stimulus consisting of ten elements: pure tones with various frequencies for audition, or dots with various spatial positions for vision. The test stimulus was preceded or followed by a probe stimulus consisting of a single element, and two change-detection tasks were performed. In the “present/absent” task, the probe either matched one randomly selected element of the test stimulus or none of them; participants reported present or absent. In the “direction-judgment” task, the probe was always slightly shifted relative to one randomly selected element of the test stimulus; participants reported the direction of the shift. Whereas visual performance was systematically better in the present/absent task than in the direction-judgment task, the opposite was true for auditory performance. Moreover, whereas visual performance was strongly dependent on selective attention and on the time interval separating the probe from the test stimulus, this was not the case for auditory performance. Our results show that small auditory changes can be detected automatically across relatively long temporal gaps, using an implicit memory system that seems to have no similar counterpart in the visual domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alvarez GA, Cavanagh P (2004) The capacity of visual short-term memory is set both by visual information load and by number of objects. Psychol Sci 15:106–111

    Article  CAS  PubMed  Google Scholar 

  • Awh E, Barton B, Vogel EK (2007) Visual working memory represents a fixed number of items regardless of complexity. Psychol Sci 18:622–628

    Article  PubMed  Google Scholar 

  • Bays PM, Husain M (2008) Dynamic shifts of limited working memory resources in human vision. Science 321:851–854

    Article  CAS  PubMed  Google Scholar 

  • Beck DM, Rees G, Frith CD, Lavie N (2001) Neural correlates of change detection and change blindness. Nat Neurosci 4:645–650

    Article  CAS  PubMed  Google Scholar 

  • Best V, Ozmeral EJ, Kopco N, Shinn-Cunningham BG (2008) Object continuity enhances selective auditory attention. Proc Nat Acad Sci USA 105:13173–13177

    Google Scholar 

  • Bregman AS (1990) Auditory scene analysis. MIT Press, Cambridge

    Google Scholar 

  • Brosch M, Schreiner CE (2000) Sequence sensitivity of neurons in cat primary auditory cortex. Cereb Cortex 10:1155–1167

    Article  CAS  PubMed  Google Scholar 

  • Chait M, Poeppel D, de Cheveigné A, Simon JZ (2007) Processing asymmetry of transitions between order and disorder in human auditory cortex. J Neurosci 27:5207–5214

    Article  CAS  PubMed  Google Scholar 

  • Cowan N (1995) Attention and memory. Oxford University Press, New York

    Google Scholar 

  • Demany L, Ramos C (2005) On the binding of successive sounds: perceiving shifts in nonperceived pitches. J Acoust Soc Am 117:833–841

    Article  PubMed  Google Scholar 

  • Demany L, Semal C (2008) The role of memory in auditory perception. In: Yost WA, Popper AN, Fay RR (eds) Auditory perception of sound sources. Springer, New York, pp 77–113

    Google Scholar 

  • Demany L, Trost W, Serman M, Semal C (2008) Auditory change detection: simple sounds are not memorized better than complex sounds. Psychol Sci 19:85–91

    Article  PubMed  Google Scholar 

  • Demany L, Pressnitzer D, Semal C (2009) Tuning properties of the auditory frequency-shift detectors. J Acoust Soc Am 126:1342–1348

    Article  PubMed  Google Scholar 

  • Ditterich J, Mazurek ME, Shadlen MN (2003) Microstimulation of visual cortex affects the speed of perceptual decisions. Nat Neurosci 6:891–898

    Article  CAS  PubMed  Google Scholar 

  • Divenyi PL, Oliver SK (1989) Resolution of steady-state sounds in simulated auditory space. J Acoust Soc Am 85:2042–2052

    Article  Google Scholar 

  • Downar J, Crawley AP, Mikulis DJ, Davis KD (2000) A multimodal cortical network for the detection of changes in the sensory environment. Nat Neurosci 3:77–283

    Google Scholar 

  • Eramudugolla R, Irvine DRF, McAnally KI, Martin RL, Mattingley JB (2005) Directed attention eliminates ‘change deafness’ in complex auditory scenes. Curr Biol 15:1108–1113

    Article  CAS  PubMed  Google Scholar 

  • Gregg MK, Samuel AG (2008) Change deafness and the organizational properties of sounds. J Exp Psychol Hum Percept Perform 34:974–991

    Article  PubMed  Google Scholar 

  • Griffiths TD, Warren JD (2004) What is an auditory object? Nat Rev Neurosci 5:887–892

    Article  CAS  PubMed  Google Scholar 

  • Hafter ER, Sarampalis A, Loui P (2008) Auditory attention and filters. In: Yost WA, Popper AN, Fay RR (eds) Auditory perception of sound sources. Springer, New York, pp 115–142

    Google Scholar 

  • Intriligator J, Cavanagh P (2001) The spatial resolution of visual attention. Cogn Psychol 43:171–216

    Article  CAS  PubMed  Google Scholar 

  • Kidd G, Mason CR, Richards VM, Gallun FJ, Durlach NI (2008) Informational masking. In: Yost WA, Popper AN, Fay RR (eds) Auditory perception of sound sources. Springer, New York, pp 143–189

    Google Scholar 

  • Kubovy M, van Valkenburg D (2001) Auditory and visual objects. Cognition 80:97–126

    Article  CAS  PubMed  Google Scholar 

  • Luck SJ, Vogel EK (1997) The capacity of visual working memory for features and conjunctions. Nature 390:279–281

    Article  CAS  PubMed  Google Scholar 

  • Macmillan NA, Creelman CD (1991) Detection theory: a user’s guide. Cambridge University Press, Cambridge

    Google Scholar 

  • Massaro DW, Loftus GR (1996) Sensory and perceptual storage. In: Bjork EL, Bjork RA (eds) Memory. Academic Press, San Diego, pp 67–99

    Chapter  Google Scholar 

  • McKenna TM, Weinberger NM, Diamond DM (1989) Responses of single auditory cortical neurons to tone sequences. Brain Res 481:142–153

    Article  CAS  PubMed  Google Scholar 

  • Micheyl C, Kaernbach C, Demany L (2008) An evaluation of psychophysical models of auditory change perception. Psychol Rev 115:1069–1083

    Article  PubMed  Google Scholar 

  • Moore BCJ (2004) An introduction to the psychology of hearing. Elsevier, Amsterdam

    Google Scholar 

  • Muckli L, Kohler A, Kriegeskorte N, Singer W (2005) Primary visual cortex activity along the apparent-motion trace reflects illusory perception. PLoS Biol 3:e265

    Article  PubMed  CAS  Google Scholar 

  • Näätänen R, Tervaniemi M, Sussman E, Paavilainen P, Winkler I (2001) ‘Primitive intelligence’ in the auditory cortex. Trends Neurosci 24:283–288

    Article  PubMed  Google Scholar 

  • Newsome WT, Mikami A, Wurtz RH (1986) Motion selectivity in macaque visual cortex. III. Psychophysics and physiology of apparent motion. J Neurophysiol 55:1340–1351

    CAS  PubMed  Google Scholar 

  • O’Regan JK, Noë A (2001) A sensorimotor account of vision and visual consciousness. Behav Brain Sci 24:939–1011

    Article  PubMed  Google Scholar 

  • O’Regan JK, Rensink RA, Clark JJ (1999) Change-blindness as a result of ‘mudsplashes’. Nature 398:34

    Article  PubMed  Google Scholar 

  • Pashler H (1988) Familiarity and visual change detection. Percept Psychophys 44:369–378

    CAS  PubMed  Google Scholar 

  • Pavani F, Turatto M (2008) Change perception in complex auditory scenes. Percept Psychophys 70:619–629

    Article  PubMed  Google Scholar 

  • Phillips WA (1974) On the distinction between sensory storage and short-term visual memory. Percept Psychophys 16:283–290

    Google Scholar 

  • Phillips WA, Singer W (1974a) Function and interaction of On and Off transients in vision. I. Psychophysics. Exp Brain Res 19:493–506

    Article  CAS  PubMed  Google Scholar 

  • Phillips WA, Singer W (1974b) Function and interaction of On and Off transients in vision. II. Neurophysiology. Exp Brain Res 19:507–521

    Article  PubMed  Google Scholar 

  • Rensink RA (2002) Change detection. Ann Rev Psychol 53:245–277

    Article  Google Scholar 

  • Rensink RA, O’Regan JK, Clark JJ (1997) To see or not to see: the need for attention to perceive changes in scenes. Psychol Sci 8:368–373

    Article  Google Scholar 

  • Scholl BJ (2001) Objects and attention: the state of the art. Cognition 80:1–46

    Article  CAS  PubMed  Google Scholar 

  • Shamma SA (2001) On the role of space and time in auditory processing. Trends Cog Sci 5:340–348

    Article  Google Scholar 

  • Stelmach LB, Bourassa CM, Di Lollo V (1984) Detection of stimulus change: the hypothetical roles of visual transient responses. Percept Psychophys 35:245–255

    CAS  PubMed  Google Scholar 

  • Theeuwes J, Kramer AF, Hahn S, Irwin DE (1998) Our eyes do not always go where we want them to go: capture of the eyes by new objects. Psychol Sci 9:379–385

    Article  Google Scholar 

  • Tiitinen H, May P, Reinikainen K, Näätänen R (1994) Attentive novelty detection in humans is governed by pre-attentive sensory memory. Nature 372:90–92

    Article  CAS  PubMed  Google Scholar 

  • Visscher KM, Kaplan E, Kahana MJ, Sekuler R (2007) Auditory short-term memory behaves like visual short-term memory. PloS Biol 5:e56

    Article  PubMed  CAS  Google Scholar 

  • Vitevitch MS (2003) Change deafness: the inability to detect changes between two voices. J Exp Psychol Hum Percept Perform 29:333–342

    Article  PubMed  Google Scholar 

  • Wilken P, Ma WJ (2004) A detection theory account of change detection. J Vis 4:1120–1135

    Article  PubMed  Google Scholar 

  • Yantis S, Hillstrom AP (1994) Stimulus-driven attentional capture: evidence from equiluminant visual objects. J Exp Psychol Hum Percept Perform 20:95–107

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Luck SJ (2008) Discrete fixed-resolution representations in visual working memory. Nature 453:233–235

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Authors LD and DP contributed equally to this work. We thank Prof. Patrick Cavanagh and Dr. Andrei Gorea for helpful discussions about the visual experiments. We also thank Dr. Etienne Guillaud for technical assistance and Dr. Trevor Agus for suggestions on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Demany.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demany, L., Semal, C., Cazalets, JR. et al. Fundamental differences in change detection between vision and audition. Exp Brain Res 203, 261–270 (2010). https://doi.org/10.1007/s00221-010-2226-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-010-2226-2

Keywords

Navigation