Skip to main content
Log in

Predicting the timing of wrong decisions with LATER

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Response time, or latency, is increasingly being used to provide information about neural decision processes. LATER (Linear Approach to Threshold with Ergodic Rate) is a quasi-Bayesian model of decision-making, with the additional feature that it introduces a degree of gratuitous randomisation into the decision process. It has had some success in predicting latencies under various conditions, but has not specifically been applied to an equally important aspect of decision-making, namely errors: a complete model of decision-making should not only account for latency distributions of correct decisions but also of wrong ones. We therefore used a decision task that generates large numbers of errors: subjects are told to look at suddenly appearing targets of one colour, but not another. We found that subjects’ faster responses are as likely to be correct as wrong, but eventually the latency distributions diverge, with errors becoming infrequent. It seems that colour information, arriving after a delay, results both in cancellation of the developing response to the mere existence of the target and in delayed initiation of the correct response. A simple model, using LATER units in a similar way to one that has previously successfully modelled countermanding, accurately predicts latency distributions and proportions of all responses, whether correct or incorrect, demonstrating that the LATER model can indeed account for errors as well as correct responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Asrress KN, Carpenter RHS (2001) Saccadic countermanding: a comparison of central and peripheral stop signals. Vis Res 41:2645–2651

    Article  PubMed  CAS  Google Scholar 

  • Bichot NP, Schall JD (1999) Saccade target selection in macaque during feature and conjunction visual search. Vis Neurosci 16:81–89

    Article  PubMed  CAS  Google Scholar 

  • Boucher L, Palmieri TJ, Logan GD, Schall JD (2007) Inhibitory control in mind and brain: an interactive race model of countermanding saccades. Psychol Rev 114:376–397

    Article  PubMed  Google Scholar 

  • Brown HD, Heathcote A (2008) The simplest complete model of choice response time: linear ballistic accumulation. Cogn Psychol 57:153–178

    Article  PubMed  Google Scholar 

  • Camalier CR, Gotier A, Murthy A, Thompson KG, Logan GD, Palmieri TJ, Schall JD (2007) Dynamics of saccade target selection: race model analysis of double step and search step saccade production in human and macaque. Vis Res 47:2187–2211

    Article  PubMed  CAS  Google Scholar 

  • Carpenter RHS (1981) Oculomotor Procrastination. In: Fisher DF, Monty RA, Senders JW (eds) Eye movements: cognition and visual perception. Lawrence Erlbaum, Hillsdale, pp 237–246

    Google Scholar 

  • Carpenter RHS (1988) Movements of the eyes. Pion, London

    Google Scholar 

  • Carpenter RHS (1994) SPIC: a PC-based system for rapid measurement of saccadic responses. J Physiol 480:4 (Proceedings)

    Google Scholar 

  • Carpenter RHS, Williams MLL (1995) Neural computation of log likelihood in the control of saccadic eye movements. Nature 377:59–62

    Article  PubMed  CAS  Google Scholar 

  • Carpenter RHS, Reddi BAJ, Anderson AJ (2009) A simple two-stage model predicts response time distributions. J Physiol 587:4051–4062

    Article  PubMed  CAS  Google Scholar 

  • Dodge R, Cline TS (1901) The angle velocity of eye movements. Psychol Rev 8:145–157

    Article  Google Scholar 

  • Gomez P, Ratcliff R, Perea M (2007) A model of the Go/No-go task. J Exp Psychol 136:389–413 (General)

    Google Scholar 

  • Gottlieb J, Balan P (2010) Attention as a decision in information space. Trends Cogn Sci 14:240–248

    Article  PubMed  Google Scholar 

  • Hanes DP, Carpenter RHS (1999) Countermanding saccades in humans. Vis Res 39:2777–2791

    Article  PubMed  CAS  Google Scholar 

  • Hanes DP, Schall JD (1995) Countermanding saccades in macaque. Vis Neurosci 12:929–937

    Article  PubMed  CAS  Google Scholar 

  • Hanes DP, Schall JD (1996) Neural control of voluntary movement initiation. Science 274:427–430

    Article  PubMed  CAS  Google Scholar 

  • Javal E (1879) Essai sur la physiologie de la lecture. Annales d’Oculometrie 82:242–253

    Google Scholar 

  • Kim B, Basso MA (2008) Saccade target selection in the superior colliculus: a signal detection theory approach. J Neurosci 28:2991–3007

    Article  PubMed  CAS  Google Scholar 

  • Leach JCD, Carpenter RHS (2001) Saccadic choice with asynchronous targets: evidence for independent randomisation. Vis Res 41:3437–3445

    Article  PubMed  CAS  Google Scholar 

  • Logan GD, Cowan WB, Davis KA (1984) On the ability to inhibit responses in simple and choice reaction time tasks: a model and a method. J Exp Psychol Hum Percept Perform 10:276–291

    Article  PubMed  CAS  Google Scholar 

  • Ober JK, Przedpelska-Ober E, Gryncewicz W, Dylak J, Carpenter RHS, Ober JJ (2003) Hand-held system for ambulatory measurement of saccadic durations of neurological patients. In: Gajda J (ed) Modelling and measurement in medicine. Komitet Biocybernityki i Inzyneierii Biomedycznej PAN, Warsaw, pp 187–198

    Google Scholar 

  • Ratcliff R, Carpenter RHS, Reddi BAJ (2001) Putting noise into neurophysiological models of simple decision making. Nat Neurosci 4:336–337

    Article  PubMed  CAS  Google Scholar 

  • Ratcliff R, Hasegawa YT, Hasegawa RP, Smith PL, Segraves MA (2007) Dual diffusion model for single-cell recording data from the superior colliculus in a brightness-discrimination task. J Neurophysiol 97:1756–1774

    Article  PubMed  Google Scholar 

  • Reddi B, Carpenter RHS (2000) The influence of urgency on decision time. Nat Neurosci 3:827–831

    Article  PubMed  CAS  Google Scholar 

  • Reddi BAJ, Asrress KN, Carpenter RHS (2003) Accuracy, information and response time in a saccadic decision task. J Neurophysiol 90:3538–3546

    Article  PubMed  CAS  Google Scholar 

  • Schall JD (2003) Neural correlates of decision processes: neural and mental chronometry. Curr Opin Neurobiol 13:182–186

    Article  PubMed  CAS  Google Scholar 

  • Schall JD, Bichot N (1998) Neural correlates of visual and motor processes. Curr Opin Neurobiol 8:211–217

    Article  PubMed  CAS  Google Scholar 

  • Schall JD, Hanes DP (1993) Neural basis of saccade target selection in frontal eye field during visual search. Nature 366:467–469

    Article  PubMed  CAS  Google Scholar 

  • Schiller PH, Malpeli JG (1977) Properties and tectal projections of the monkey retinal ganglion cells. J Neurophysiol 40:428–445

    PubMed  CAS  Google Scholar 

  • Schiller PH, Malpeli JG, Schein SJ (1979) Composition of geniculostriate input to superior colliculus of the rhesus monkey. J Neurophysiol 42:1124–1133

    PubMed  CAS  Google Scholar 

  • Sinha N, Brown JTG, Carpenter RHS (2006) Task switching as a two-stage decision process. J Neurophysiol 95:3146–3153

    Article  PubMed  CAS  Google Scholar 

  • Smith PL (2000) Stochastic dynamic models of response time and accuracy: a foundational primer. Math Psychol 44:408–463

    Article  Google Scholar 

  • Smith T, Guild J (1931) The CIE colorimetric standards and their use. Trans Opt Soc 33:73–134

    Article  Google Scholar 

  • Smith PL, Ratcliff R (2004) Psychology and neurobiology of simple decisions. Trends Neurosci 27:161–168

    Article  PubMed  CAS  Google Scholar 

  • Sperling G, Dosher BA (1986) Strategy and optimization in human information processing. In: Boff K, Kaufman L, Thomas J (eds) Handbook of human perception & performance, vol 1. Wiley, New York, pp 2.1–2.65

    Google Scholar 

  • Stanford TR, Shankar S, Massoglia DP, Costello MG, Salinas E (2010) Perceptual decision-making in less than 30 milliseconds. Nat Neurosci 13:379–385

    Article  PubMed  CAS  Google Scholar 

  • Stuphorn V, Brown JW, Schall JD (2010) Role of supplementary eye field in saccadic initiation: executive, not direct, control. J Neurophysiol 103:801–816

    Article  PubMed  Google Scholar 

  • Thompson KG, Bichot NP (2005) A visual salience map in the primate frontal eye field. Prog Brain Res 147:251–262

    PubMed  Google Scholar 

  • Thompson KG, Hanes DP, Bichot NP, Schall JD (1996) Perceptual and motor processing stages identified in the activity of macaque frontal eye field neurons during visual search. J Neurophysiol 76:4040–4055

    PubMed  CAS  Google Scholar 

  • Wheeless LL, Boynton RM, Cohen GH (1966) Eye-movement responses to step and pulse-step stimuli. J Opt Soc Am 56:956–960

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. H. S. Carpenter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noorani, I., Gao, M.J., Pearson, B.C. et al. Predicting the timing of wrong decisions with LATER. Exp Brain Res 209, 587–598 (2011). https://doi.org/10.1007/s00221-011-2587-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-011-2587-1

Keywords

Navigation