Skip to main content
Log in

Histone deacetylases—an important class of cellular regulators with a variety of functions

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The elucidation of mechanisms of chromatin remodeling, particular transcriptional activation, and repression by histone acetylation and deacetylation has shed light on the role of histone deacetylases (HDAC) as a new kind of therapeutic target for human cancer treatment. HDACs, in general, act as components of large corepressor complexes that prevent the transcription of several tumor suppression genes. In addition, they appear to be also involved in the deacetylation of nonhistone proteins. This paper reviews the most recent insights into the diverse biological roles of HDACs as well as the evolution of this important protein family.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Adcock IM (2006) Histone deacetylase inhibitors as novel anti-inflammatory agents. Curr Opin Investig Drugs 7:966–973

    CAS  PubMed  Google Scholar 

  • Allfrey VG, Faulkner R, Mirsky AE (1964) Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc Natl Acad Sci U S A 51:786–794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arendt CS, Hochstrasser M (1999) Eukaryotic 20S proteasome catalytic subunit propeptides prevent active site inactivation by N-terminal acetylation and promote particle assembly. EMBO J 18:3575–3585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ayer DE (1999) Histone deacetylases: transcriptional repression with SINers and NuRDs. Trends Cell Biol 9:193–198

    Article  CAS  PubMed  Google Scholar 

  • Baeza I, Ibanez M, Wong C, Chavez P, Gariglio P, Oro J (1992) Possible prebiotic significance of polyamines in the condensation, protection, encapsulation, and biological properties of DNA. Orig Life Evol Biosph 11:225–242

    Article  Google Scholar 

  • Bali P, Pranpat M, Bradner J, Balasis M, Fiskus W, Guo F, Rocha K, Kumaraswamy S, Boyapalle S, Atadja P, Seto E, Bhalla K (2005) Inhibition of histone deacetylase 6 acetylates and disrupts the chaperone function of heat shock protein 90: a novel basis for antileukemia activity of histone deacetylase inhibitors. J Biol Chem 280:26729–26734

    Article  CAS  PubMed  Google Scholar 

  • Barak R, Prasad K, Shainskaya A, Wolfe AJ, Eisenbach M (2004) Acetylation of the chemotaxis response regulator CheY by acetyl-CoA synthetase purified from Escherichia coli. J Mol Biol 342:383–401

    Article  CAS  PubMed  Google Scholar 

  • Basu HS, Schwietert HC, Feuerstein BG, Marton LJ (1990) Effects of variation in the structure of spermine on the association with DNA and the induction of DNA conformational changes. Biochem J 269:329–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beglopoulos V, Shen J (2006) Regulation of CRE-dependent transcription by presenilins: prospects for therapy of Alzheimer’s disease. Trends Pharmacol Sci 27:33–40

    Article  CAS  PubMed  Google Scholar 

  • Bell SD, Botting CH, Wardleworth BN, Jackson SP, White MF (2002) The interaction of Alba, a conserved archaeal chromatin protein, with Sir2 and its regulation by acetylation. Science 296:148–151

    Article  CAS  PubMed  Google Scholar 

  • Bergel M, Herrera JE, Thatcher BJ, Prymakowska-Bosak M, Vassilev A, Nakatani Y, Martin B, Bustin M (2000) Acetylation of novel sites in the nucleosomal binding domain of chromosomal protein HMG-14 by p300 alters its interaction with nucleosomes. J Biol Chem 275:11514–11520

    Article  CAS  PubMed  Google Scholar 

  • Bertos NR, Wang AH, Yang X-J (2001) Class II histone deacetylase: structure, function, and regulation. Biochem Cell Biol 79:243–252

    Article  CAS  PubMed  Google Scholar 

  • Blanchard F, Chipoy C (2005) Histone deacetylase inhibitors: new drugs for the treatment of inflammatory diseases? Drug Discov Today 10:197–204

    Article  CAS  PubMed  Google Scholar 

  • Brehm A, Miska EA, McChance DJ, Reid JL, Bannister AJ, Kouzarides T (1998) Retinoblastoma protein recruits histone deacetylase to repress transcription. Nature 391:597–601

    Article  CAS  PubMed  Google Scholar 

  • Brush MH, Guardiola A, Connor JH, Yao TP, Shenolikar S (2004) Deacetylase inhibitors disrupt cellular complexes containing protein phosphatases and deacetylases. J Biol Chem 279:7685–7691

    Article  CAS  PubMed  Google Scholar 

  • Cabrero JR, Serrador JM, Barreiro O, Mittelbrunn M, Naranjo-Suárez S, Martin-Córeces N, Vicente-Manzanares M, Mazitschek R, Bradner JE, Ávila J, Valenzuela-Fernández A, Sánchez-Madrid F (2006) Lymphocyte chemotaxis is regulated by histone deacetylase 6, independently of its deacetylase activity. Mol Biol Cell 17:3435–3445

    Article  Google Scholar 

  • Chattopadhyay MK, Tabor CW, Tabor H (2003) Polyamines protect Escherichia coli cells from the toxic effect of oxygen. Proc Natl Acad Sci U S A 100:2261–2265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Sprung R, Tang Y, Ball H, Sangras B, Kim S, Falck JR, Peng J, Gu W, Zhao Y (2007) Lysine propionylation and butyrylation are novel post-translational modifications in histones. Mol Cell Proteomics (in press)

  • Chuang HC, Chang CW, Chang GD, Yao TP, Chen H (2006) Histone deacetylase 3 binds to and regulates the GCMa transcription factor. Nucleic Acids Res 34:1459–1469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen HY, Lavu S, Bitterman KJ, Hekking B, Imahiyerobo TA, Miller C, Frye R, Ploegh H, Kessler BM, Sinclair DA (2004) Acetylation of the C terminus of Ku70 by CBP and PCAF controls Bax-mediated apoptosis. Mol Cell 13:627–638

    Article  CAS  PubMed  Google Scholar 

  • Cominboeuf C, Hu P, Tuckerman ME, Zhang T (2006) Unexpected deacetylation mechanism suggested by a density functional theory QM/MM study of histone-deacetylase-like protein. J Am Chem Soc 128:4530–4531

    Article  CAS  Google Scholar 

  • D’Agostino L, diPietro M, DiLuccia A (2005) Nuclear aggregates of polyamines are supramolecular structures that play a crucial role in genomic DNA protection and conformation. FEBS J 272:3777–3787

    Article  CAS  PubMed  Google Scholar 

  • Dame RT, Wuite GJL (2003) On the role of H-NS in the organization of bacterial chromatin: from bulk to single molecules and back. Biophys J 85:4146–4148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dannenberg J-H, David G, Zhong S, van der Torre J, Wong WH, DePinho RA (2005) mSin3A corepressor regulates diverse transcriptional networks governing normal and neoplastic growth and survival. Genes Dev 19:1581–1595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Ruijter JM, van Gennip AH, Caron HN, Kemp S, van Kuilenburg ABP (2003) Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J 370:737–749

    Article  PubMed  PubMed Central  Google Scholar 

  • Deng H, Bloomfield VA, Benevides JM, Thomas GJ (2000) Structural basis of polyamine–DNA recognition: spermidine and spermine interactions with genomic B-DNAs of different GC content probed by Raman spectroscopy. Nucleic Acids Res 28:3379–3385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deplus R, Brenner C, Burgers WA, Putmans P, Kouzarides T, de Launoit Y, Fuks F (2002) Dnmt3L is a transcriptional repressor that recruits histone deacetylase. Nucleic Acids Res 30:3831–3838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dhordain P, Albagli O, Lin RJ, Ansieau S, Quief S, Leutz A, Kerckaaert J-P, Evans RM, Leprince D (1997) Corepressor SMRT binds the BTB/POZ repressing domain of the LAZ3/BCL6 oncoprotein. Proc Natl Acad Sci U S A 94:10762–10767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Durst KL, Hiebert SW (2004) Role of RUNX family members in transcriptional repression and gene silencing. Oncogene 23:4220–4224

    Article  CAS  PubMed  Google Scholar 

  • Durst KL, Lutterbach B, Kummalue T, Friedman AD, Hiebert SW (2003) The inv(16) fusion protein associates with corepressor via a smooth muscle myosin heavy-chain domain. Mol Cell Biol 23:607–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandes I, Bastien Y, Wai T, Nygard K, Lin R, Cormier O, Lee HS, Eng F, Betos NR, Pelletier N, Mader S, Han VK, Yang XJ, White JH (2003) Ligand-dependent nuclear receptor corepressor LCoR functions by histone deacetylase-dependent and -independent mechanisms. Mol Cell 11:139–150

    Article  CAS  PubMed  Google Scholar 

  • Finnin MS, Donigian JR, Cohen A, Richon VM, Rifkind RA, Marks PA, Breslow R, Pavletich NP (1999) Structures of a histone deacetylase homologue bound to TSA and SAHA inhibitors. Nature 401:188–193

    Article  CAS  PubMed  Google Scholar 

  • Fischle W, Kiermer V, Dequiedt F, Verdin E (2001) The emergency role of class II histone deacetylases. Biochem Cell Biol 337–348

  • Foglietti C, Filocamo G, Cundari E, De Rinaldis E, Lahm A, Cortese R, Steinkühler C (2006) Dissecting the biological functions of Drosophila histone deacetylases by RNA interference and transcriptional profiling. J Biol Chem 281:17968–17976

    Article  CAS  PubMed  Google Scholar 

  • Forouhar F, Lee I-S, Vujcic J, Vujcic S, Shen J, Vorobiev SM, Xiao R, Acton TB, Montelione GT, Porter CW, Tong L (2005) Structural and functional evidences for Bacillus subtilis PaiA as a novel N1-spermidine/spermine acetyltransferase (SSAT). J Biol Chem 280:40328–40336

    Article  CAS  PubMed  Google Scholar 

  • Frye RA (2000) Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem Biophys Res Commun 273:793–798

    Article  CAS  PubMed  Google Scholar 

  • Gandhi TK, Zhong J, Mathivanan S, Karthick L, Chandrika KN, Mohan SS, Sharma S, Pinkert S, Nagaraju S, Periaswamy B, Mishra G, Nandakumar K, Shen B, Deshpande N, Nayak R, Sarker M, Boeke JD, Parmigiani G, Schultz J, Bader JS, Pandey A (2006) Analysis of the human protein interactome and comparison with yeast, worm and fly interaction datasets. Nat Genet 38:285–293

    Article  CAS  PubMed  Google Scholar 

  • Gao L, Cueto MA, Asselbergs F, Atadja P (2002) Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family. J Biol Chem 277:25748–25755

    Article  CAS  PubMed  Google Scholar 

  • Gardner JG, Grundy FJ, Henkin TM, Escalante-Semerena JC (2006) Control of acetyl-coenzyme A synthetase (AcsA) activity by acetylation/deacetylation without NAD+ involvement in Bacillus subtilis. J Bacteriol 188:5460–5468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glaser KB, Staver MJ, Waring JF, Stender J, Ulrich RG, Davidsen SK (2003) Gene expression profiling of multiple histone deacetylase (HDAC) inhibitors: defining a common gene set produced by HDAC inhibition in T24 and MDA carcinoma cell lines. Mol Cancer Ther 2:151–163

    CAS  PubMed  Google Scholar 

  • Golderer G, Gröbner P (1991) ADP-ribosylation of core histones and their acetylated subspecies. Biochem J 277:607–610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gregoretti IV, Lee Y-M, Goodson HV (2004) Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. J Mol Biol 338:17–31

    Article  CAS  PubMed  Google Scholar 

  • Grönroos E, Hellman U, Heldin CH, Ericsson J (2002) Control of Smad7 stability by competition between acetylation and ubiquitination. Mol Cell 10:483–493

    Article  PubMed  Google Scholar 

  • Grozinger CM, Schreiber SL (2002) Deacetylase enzymes: biological functions and the use of small-molecule inhibitors. Chem Biol 9:3–16

    Article  CAS  PubMed  Google Scholar 

  • Grunstein M (1997) Histone acetylation in chromatin structure and transcription. Nature 389:349–352

    Article  CAS  PubMed  Google Scholar 

  • Gugliucci A (1994) Advanced glycation of rat liver histone octamers: an in vitro study. Biochem Biophys Res Commun 203:588–593

    Article  CAS  PubMed  Google Scholar 

  • Halme A, Bumgarner S, Styles C, Fink GR (2004) Genetic and epigenetic regulation of the FLO gene family generates cell-surface variation in yeast. Cell 116:405–415

    Article  CAS  PubMed  Google Scholar 

  • Hassig CA, Fleischer TC, Billin AN, Schreiber SL, Ayer DE (1997) Histone deacetylase activity is required for full transcriptional repression by mSin3A. Cell 89:341–347

    Article  CAS  PubMed  Google Scholar 

  • Hildmann C, Ninkovic M, Dietrich R, Wegener D, Riester D, Zimmermann T, Birch OM, Bernegger C, Loidl P, Schwienhorst A (2004) A new amidohydrolase from Bordetella/Alcaligenes strain FB188 with similarities to histone deacetylases. J Bacteriol 8:2328–2339

    Article  CAS  Google Scholar 

  • Hildmann C, Wegener D, Riester D, Hempel R, Schober A, Merana J, Giurato L, Guccione S, Nielsen TK, Ficner R, Schwienhorst A (2006) Substrate and inhibitor specificity of class 1 and class 2 histone deacetylases. J Biotechnol 124:258–270

    Article  CAS  PubMed  Google Scholar 

  • Hong L, Schroth GP, Matthews HR, Yau P, Bradbury EM (1993) Studies of the DNA binding properties of histone H4 amino terminus. Thermal denaturation studies reveal that acetylation markedly reduces the binding constant of the H4 ‘tail’ to DNA. J Biol Chem 268:305–314

    CAS  PubMed  Google Scholar 

  • Hoshijima M, Chien KR (2002) Mixed signals in heart failure: cancer rules. J Clin Invest 109:849–855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang M, Oppermann FB, Steinbüchel A (1999) Biochemical and molecular characterization of the Bacillus subtilis acetoin catabolic pathway. J Bacteriol 181:3837–3841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang S, Qiu Y, Shi Y, Xu Z, Brandt SJ (2000) P/CAF-mediated acetylation regulates the function of the basic helix–loop–helix transcription factor TAL1/SCL. EMBO J 19:6792–6803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hubbert C, Guardiola A, Shao R, Kawaguchi Y, Ito A, Nixon A, Yoshida M, Wang X-F, Yao T-P (2002) HDAC6 is a microtubule-associated deacetylase. Nature 417:455–458

    Article  CAS  PubMed  Google Scholar 

  • Huisman O, Faelen M, Girard D, Jaffé A, Toussaint A, Rouviere-Yaniv J (1989) Multiple defects in Escherichia coli mutants lacking HU protein. J Bacteriol 171:3704–3712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hurley JH, Dean AM, Sohl JL, Koshland DE, Stroud RM (1990) Regulation of an enzyme by phosphorylation at the active site. Science 249:1012–1016

    Article  CAS  PubMed  Google Scholar 

  • Ito A, Kawaguchi Y, Lai CH, Kovacs JJ, Higashimoto Y, Appella E, Yao TP (2002) MDM2–HDAC1-mediated deacetylation of p53 is required for its degradation. EMBO J 21:6236–6245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kadosh D, Struhl K (1997) Repression by Ume6 involves recruitment of a complex containing Sin3 corepressor and Rpd3 histone deacetylase to target promoters. Cell 89:365–371

    Article  CAS  PubMed  Google Scholar 

  • Kao GD, McKenna WG, Guenther MG, Muschel RJ, Lazar MA, Yen TJ (2003) Histone deacetylase 4 interacts with 53BP1 to mediate the DNA damage response. J Cell Biol 160:1017–1027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kapustin GV, Fejer G, Gronlund JL, McCafferty DG, Seto E, Etzkorn FA (2003) Phosphorus-based SAHA analogues as histone deacetylase inhibitors. Org Lett 5:3053–3056

    Article  CAS  PubMed  Google Scholar 

  • Kasten MM, Dorland S, Stillman DJ (1997) A large protein complex containing the yeast Sin3p and Rpd3p transcriptional regulators. Mol Cell Biol 17:4852–4858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kato H, Tamamizu-Kato SF, Shibasaki F (2004) Histone deacetylase 7 associates with hypoxia-inducible factor 1a and increases transcriptional activity. J Biol Chem 279:41966–41974

    Article  CAS  PubMed  Google Scholar 

  • Kawaguchi Y, Kovacs JJ, McLaurin A, Vance JM, Ito A, Yao TP (2003) The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress. Cell 115:727–738

    Article  CAS  PubMed  Google Scholar 

  • Khochbin S, Wolffe AP (1997) The origin and utility of histone deacetylase. FEBS Lett 419:157–160

    Article  CAS  PubMed  Google Scholar 

  • Kook H, Lepore JJ, Gitler AD, Lu MM, Yung WW-M, Mackay J, Zhou R, Ferrari V, Gruber P, Epstein JA (2002) Cardiac hypertrophy and histone deacetylase-dependent transcriptional repression mediated by the atypical homeodomain protein Hop. J Clin Invest 112:863–871

    Article  Google Scholar 

  • Kouraklis G, Theocharis S (2006) Histone deacetylase inhibitors: a novel target of anticancer therapy (review). Oncol Rep 15:489–494

    CAS  PubMed  Google Scholar 

  • Kouzarides T (2000) Acetylation: a regulatory modification to rival phosphorylation? EMBO J 19:1176–1179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kovacs JJ, Murphy PJ, Gaillard S, Zhao X, Wu J-T, Nicchitta CV, Yoshida M, Toft DO, Pratt WB, Yao T-P (2005) HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor. Mol Cell 18:601–605

    Article  CAS  PubMed  Google Scholar 

  • Laherty CD, Yang W-M, Sun J-M, Davie JR, Seto E, Eisenman RN (1997) Histone deacetylases associated with the mSin3 corepressor mediate Mad transcriptional repression. Cell 89:349–356

    Article  CAS  PubMed  Google Scholar 

  • Lazar MA (2003) Nuclear receptor corepressors. Nucl Recept Signal 1:1–4

    Article  CAS  Google Scholar 

  • Ledent V, Vervoort M (2006) Comparative genomics of the class 4 histone deacetylase family indicates a complex evolutionary history. BMC Biol 4:1–10

    Article  CAS  Google Scholar 

  • Lee H, Sengupta N, Villagra A, Rezai-Zadeh N, Seto E (2006) Histone deacetylase 8 safeguards the human ever-shorter telomeres 1B (hEST1B) protein from ubiquitin-mediated degradation. Mol Cell Biol 26:5259–5269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leipe DD, Landsman D (1997) Histone deacetylases, acetoin utilization proteins and acetylpolyamine amidohydrolases are members of an ancient protein superfamily. Nucleic Acids Res 25:3693–3697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lemercier C, Brocard M-P, Puvion-Dutilleul F, Kao H-Y, Albagli O, Khochbin S (1997) Class II histone deacetylases are directly recruited by BCL6 transcriptional repressor. J Biol Chem 277:22045–22052

    Article  CAS  Google Scholar 

  • Li Y, Kao GD, Garcia BA, Shabanowitz J, Hunt DF, Qin J, Phelan C, Lazar MA (2006) A novel histone deacetylase pathway regulates mitosis by modulating Aurora B kinase activity. Genes Dev 20:2566–2579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liebich HM, Gesele E, Wirth C, Woll J, Jobst K, Lakatos A (1993) Non-enzymatic glycation of histones. Biol Mass Spectrom 22:121–123

    Article  CAS  PubMed  Google Scholar 

  • Limsuwun K, Jones PG (2000) Spermidine acetyltransferase is required to prevent spermidine toxicity at low temperatures in Escherichia coli. J Bacteriol 182:5373–5380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389:251–260

    Article  CAS  PubMed  Google Scholar 

  • Manning GS (1978) The molecular theory of polyelectrolyte solutions with applications to the electrostatic properties of polynucleotides. Q Rev Biophys 11:179–246

    Article  CAS  PubMed  Google Scholar 

  • Margueron R, Trojer P, Reinberg D (2005) The key to development: interpreting the histone code? Curr Opin Genet Dev 15:163–176

    Article  CAS  PubMed  Google Scholar 

  • Mariadason JM, Corner GA, Augenlicht LH (2000) The use of DNA microarrays to identify genes that are regulated by HDAC inhibitors. Cancer Res 60:4561–4572

    CAS  PubMed  Google Scholar 

  • Marsh VL, Peak-Chew SY, Bell SD (2005) Sir2 and the acetyltransferase, Pat, regulate the archaeal chromatin protein, Alba. J Biol Chem 280:21122–21128

    Article  CAS  PubMed  Google Scholar 

  • Min J, Landry J, Sternglanz R, Xu R-L (2001) Crystal structure of a SIR2 homolog–NAD complex. Cell 105:269–279

    Article  CAS  PubMed  Google Scholar 

  • Minucci S, Pelicci PG (2006) Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat Rev 6:38–51

    Article  CAS  Google Scholar 

  • Miska EA, Karlsson C, Landley E, Nielsen S, Pines J, Kouzarides T (1999) HDAC4 deacetylase associates with and represses the MEF2 transcription factor. EMBO J 18:5099–5107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moreth K, Riester D, Hildmann C, Hempel R, Wegener D, Schober A, Schwienhorst A (2006) Active site tyrosine is essential for amidohydrolase but not for esterase activity of a class 2 histone deacetylase-like bacterial enzyme. Biochem J 401:659–665

    Article  CAS  Google Scholar 

  • Morgan JE, Calkins CC, Matthews HR (1989) Discovery and mapping of discrete binding sites on nucleosome core particles for photoaffinity derivative of spermine. Biochemistry 28:5095–5106

    Article  CAS  Google Scholar 

  • Naruse Y, Aoki T, Kojima T, Mori N (1999) Neural restrictive silencer factor recruits mSin3 and histone deacetylase complex to repress neuron-specific target genes. Proc Natl Acad Sci U S A 96:13691–13696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nathan D, Sterner DE, Berger SL (2003) Histone modifications: now summoning sumoylation. Proc Natl Acad Sci U S A 100:13118–13120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nawrocki ST, Carew JS, Pino MS, Highshaw RA, Andtbacka RH, Dunner K, Pal A, Bornmann WG, Chiao PJ, Huang P, Xiong H, Abbruzzese JL, McConkey DJ (2006) Aggresome disruption: a novel strategy to enhance bortezomib-induced apoptosis in pancreatic cancer cells. Cancer Res 66:3773–3781

    Article  CAS  PubMed  Google Scholar 

  • Nielsen TK, Hildmann C, Dickmanns A, Schwienhorst A, Ficner R (2005) Crystal structure of a bacterial class 2 histone deacetylase homologue. J Mol Biol 354:107–120

    Article  CAS  PubMed  Google Scholar 

  • Nomura T, Khan MM, Kaul SC, Dong HD, Wadhwa R, Comenares C, Kohno I, Ishii S (1999) Ski is a component of the histone deacetylase complex required for transcriptional repression by Mad and the thyroid hormone receptor. Genes Dev 13:412–423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nowak SJ, Corces VG (2004) Phosphorylation of histone H3: a balancing act between chromosome condensation and transcriptional activation. Trends Genet 20:214–220

    Article  CAS  PubMed  Google Scholar 

  • Nusinzon I, Horvath CM (2005) Histone deacetylases as transcriptional activators? Role reversal in inducible gene regulation. Sci STKE 296:re11

    Google Scholar 

  • Nusinzon I, Horvarth CM (2006) Positive and negative regulation of the innate antiviral response and beta interferon gene expression by deacetylation. Mol Cell Biol 26:3106–3113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osley MA (2004) H2B ubiquitylation: the end is in sight. Biochim Biophys Acta 1677:74–78

    Article  CAS  PubMed  Google Scholar 

  • Pazin MJ, Kadonaga JT (1997) What’s up and down with histone deacetylation and transcription? Cell 89:325–328

    Article  CAS  PubMed  Google Scholar 

  • Peart MJ, Smyth GK, van Laar RK, Bowtell DD, Richon VM, Marks PA, Holloway AJ, Johnsone RW (2005) Identification and functional significance of genes regulated by structurally different histone deacetylase inhibitors. Proc Natl Acad Sci U S A 102:3697–3702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pereira SL, Grayling RA, Lurz R, Reeve JN (1997) Archaeal nucleosomes. Proc Natl Acad Sci U S A 94:12633–12637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peterson CL (2002) HDAC’s at work: everyone doing their part. Mol Cell 9:921–929

    Article  CAS  PubMed  Google Scholar 

  • Pollard KJ, Samuels ML, Crowley KA, Hansen JC, Peterson CL (1999) Functional interaction between GCN5 and polyamines: a new role for core histone acetylation. EMBO J 18:5622–5633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Popov N, Wahlström T, Hurlin PJ, Henriksson M (2005) Mnt transcriptional repressor is functionally regulated during cell cycle progression. Oncogene 24:8326–8337

    Article  CAS  PubMed  Google Scholar 

  • Quaissi M, Quaissi A (2006) Histone deacetylase enzymes as potential drug targets in cancer and parasitic diseases. J Biomed Biotechnol 2006:1–10

    Google Scholar 

  • Ramakrishnan R, Schuster M, Bourret RB (1998) Acetylation at Lys-92 enhances signaling by the chemotaxis response regulator protein CheY. Proc Natl Acad Sci U S A 95:4918–4923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rappsilber J, Ryder U, Lamond AI, Mann M (2002) Large-scale proteomic analysis of the human spliceosome. Genome Res 12:1231–1245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Razin A (1998) CpG methylation, chromatin structure and gene silencing—a three-way connection. EMBO J 17:4905–4908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reusch RN, Shabalin O, Crumbaugh A, Wagner R, Schroder O, Wurm R (2002) Posttranslational modification of E. coli histone-like protein H-NS and bovine histones by short-chain poly-(R)-3-hydroxybutyrate (cPHB). FEBS Lett 527:319–322

    Article  CAS  PubMed  Google Scholar 

  • Rich A, Zhang S (2003) Timeline: Z-DNA: the long road to biological function. Nat Rev Genet 4:566–572

    Article  CAS  PubMed  Google Scholar 

  • Riester D, Wegener D, Hildmann C, Schwienhorst A (2004) Members of the histone deacetylase superfamily differ in substrate specificity towards small synthetic substrates. Biochem Biophys Res Commun 324:1116–1123

    Article  CAS  PubMed  Google Scholar 

  • Riester D, Hildmann C, Schwienhorst A (2007) Histone deacetylase inhibitors-turning epigenic mechanisms of gene regulation into tools of therapeutic intervention in malignant and other diseases. Appl Microbiol Biotechnol (in press)

  • Rodriguez-Melendeza R, Zempleni J (2003) Regulation of gene expression by biotin. J Nutr Biochem 14:680–690

    Article  CAS  Google Scholar 

  • Ruiz-Chica J, Medina MA, Sanchez-Jimenez F, Ramirez FJ (2001) Raman study of the interaction between polyamines and a GC oligonucleotide. Biochem Biophys Res Commun 285:437–446

    Article  CAS  PubMed  Google Scholar 

  • Sakurada K, Ohta T, Fujishiro K, Hasegawa M, Aisaka K (1996) Acetylpolyamine amidohydrolase from Mycoplana ramosa: gene cloning and characterization of the metal-substituted enzyme. J Bacteriol 178:5781–5786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez-Del-Pino MM, Lopez-Rodas G, Sendra R, Tordera V (1994) Properties of the yeast nuclear histone deacetylase. Biochem J 303:723–729

    Article  PubMed  PubMed Central  Google Scholar 

  • Saunders LR, Verdin E (2006) Ornithine decarboxylase activity in tumor cell lines correlates with sensitivity to cell death induced by histone deacetylase inhibitors. Mol Cancer Ther 5:2777–2785

    Article  CAS  PubMed  Google Scholar 

  • Seigneurin-Berry D, Verdel A, Curtet S, Lemercier C, Garin J, Rousseaux S, Khochbin S (2001) Identification of components of the murine histone deacetylase 6 complex: link between acetylation and ubiquitination signaling pathways. Mol Cell Biol 21:8035–8044

    Article  Google Scholar 

  • Somoza JR, Skene RJ, Katz BA, Mol C, Ho JD, Jennings AJ, Luong C, Arvai A, Buggy JJ, Chi E, Tang J, Sang B-C, Verner E, Wynands R, Leahy EM, Dougon DR, Snell G, Navre M, Knuth MW, Swanson RV, McRee DE, Tari LW (2004) Structural snapshots of human HDAC8 provide insights into the class I histone deacetylases. Structure 12:1325–1334

    Article  CAS  PubMed  Google Scholar 

  • Spotheim-Maurizot M, Ruiz S, Sabattier R, Charlier M (1995) Radioprotection of DNA by polyamines. Int J Radiat Biol 68:571–577

    Article  CAS  PubMed  Google Scholar 

  • Stanley JS, Griffin JB, Zempleni J (2001) Biotinylation of histones in human cells. Effects of cell proliferation. Eur J Biochem 268:5424–5429

    Article  CAS  PubMed  Google Scholar 

  • Sterner DE, Berger SL (2000) Acetylation of histones and transcription-related factors. Microbiol Mol Biol Rev 64:435–459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun CD, Allis CD (2002) Ubiquitination of histone H2B regulates H3 methylation and gene silencing in yeast. Nature 418:104–108

    Article  CAS  PubMed  Google Scholar 

  • Sutheesophon K, Kobayashi Y, Takatoku MA, Ozawa K, Kano Y, Ishii H, Furukawa Y (2006) Histone deacetylase inhibitor depsipeptide (FK228) induces apoptosis in leukemia cells by facilitating mitochondrial translocation of Bax, which is enhanced by the proteasome inhibitor bortezomib. Acta Haematol 115:78–90

    Article  CAS  PubMed  Google Scholar 

  • Takami Y, Nakayama T (2000) N-terminal region, C-terminal region, nuclear export signal, and deacetylation activity of histone deacetylase-3 are essential for the viability of the DT40 chicken B cell line. J Biol Chem 275:16191–16201

    Article  CAS  PubMed  Google Scholar 

  • Taunton J, Hassig CA, Schreiber SL (1996) A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science 272:408–411

    Article  CAS  PubMed  Google Scholar 

  • Underhill C, Qutob MS, Yee S-P, Torchia J (2000) A novel nuclear receptor corepressor complex, N-CoR, contains components of the mammalian SWI/SNF complex and the corepressor KAP-1. J Biol Chem 275:40463–40470

    Article  CAS  PubMed  Google Scholar 

  • Van Lint C, Emiliani S, Verdin E (1996) The expression of a small fraction of cellular genes is changed in response to histone hyperacetylation. Gene Expr 5:245–253

    PubMed  Google Scholar 

  • Vannini A, Volpari C, Filocamo G, Casavola EC, Brunetti M, Renzoni D, Chakravarty P, Paolini C, De Francesco R, Gallinari P, Steinkühler C (2004) Crystal structure of a eukaryotic zinc-dependent histone deacetylase, human HDAC8, complexed with a hydroxamic acid inhibitor. Proc Natl Acad Sci U S A 101:15064–15069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vanommeslaeghe K, VanAlsenoy C, DeProft F, Martins JC, Tourwé D, Geerlings P (2003) Ab initio study of the binding of trichostatin A (TSA) in the active site of histone deacetylase like protein (HDLP). Org Biomol Chem 1:2951–2957

    Article  CAS  PubMed  Google Scholar 

  • Vanommeslaeghe K, de Proft F, Loverix S, Tourwe D, Geerlings P (2005) Theoretical study revealing the functioning of a novel combination of catalytic motifs in histone deacetylase. Bioorg Med Chem 13:3987–3992

    Article  CAS  PubMed  Google Scholar 

  • Vettese-Dadey M, Grant PA, Hebbes TR, Crane-Robinson C, Allis CD, Workman JL (1996) Acetylation of histone H4 plays a primary role in enhancing transcription factor binding to nucleosomal DNA in vitro. EMBO J 15:2508–2518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vitolo JM, Thiriet C, Hayes JJ (2000) The H3–H4 N-terminal tail domains are the primary mediators of transcription factor IIIA access to 5S DNA within a nucleosome. Mol Cell Biol 20:2167–2175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wade PA, Pruss D, Wolffe AP (1997) Histone acetylation: chromatin in action. Trends Biochem Sci 22:128–132

    Article  CAS  PubMed  Google Scholar 

  • Waltregny D, Leval L d, Glenisson W, Tran SL, North BJ, Bellahcene A, Weidle U, Verdin E, Castronovo V (2004) Expression of histone deacetylase 8, a class I histone deacetylase, is restricted to cells showing smooth muscle differentiation in normal human tissues. Am J Pathol 165:553–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang AH, Kruhlak MJ, Wu J, Bertos NR, Vezmar M, Posner BI, Bazett-Jones DP, Yang X-J (2000a) Regulation of histone deacetylase 4 by binding of 14-3-3 proteins. Mol Cell Biol 20:6904–6912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X-F, Moore SC, Laszckzak M, Ausio J (2000b) Acetylation increases the alpha-helical content of the histone tails of the nucleosome. J Biol Chem 275:35013–35020

    Article  CAS  PubMed  Google Scholar 

  • Wang D-F, Wiest O, Helquist P, Lan-Hargest H-Y, Wiech NL (2004) On the function of the 14 Å long internal cavity of histone deacetylase-like protein: implications for the design of histone deacetylase inhibitors. J Med Chem 47:3409–3417

    Article  CAS  PubMed  Google Scholar 

  • Wilson RW, Bloomfield VA (1979) Counterion-induced condensation of deoxyribonucleic acid. A light-scattering study. Biochemistry 79:2192–2196

    Article  Google Scholar 

  • Wondrak GT, Cervantes-Laurean D, Jacobson EL, Jacobson MK (2000) Histone carbonylation in vivo and vitro. Biochem J 351:769–777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woolridge DP, Vazquez-Laslop N, Markham PN, Chevalier MS, Gerner EW, Neyfakh AA (1997) Efflux of the natural polyamine spermidine facilitated by the Bacillus subtilis multidrug transporter Blt. J Biol Chem 272:8864–8866

    Article  CAS  PubMed  Google Scholar 

  • Woolridge DP, Martinez JD, Stringer DE, Gerner EW (1999) Characterization of a novel spermidine/spermine acetyltransferase, BltD, from Bacillus subtilis. Biochem J 340:753–758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Sengupta PK, Seto E, Smith BD (2006) Regulatory factor for X-box family proteins differentially interact with histone deacetylases to repress collagen alpha2(I) gene (COL1A2) expression. J Biol Chem 281:9260–9270

    Article  CAS  PubMed  Google Scholar 

  • Yang X-J, Grégoire S (2005) Class II histone deacetylases: from sequence to function, regulation and clinical implication. Mol Cell Biol 25:2873–2884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao YL, Yang WM, Seto E (2001) Regulation of transcription factor YY1 by acetylation and deacetylation. Mol Cell Biol 21:5979–5991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yatin M (2002) Polyamines in living organisms. J Cell Mol Biol 1:57–67

    Google Scholar 

  • Yohannes E, Thurber AE, Wilks JC, Tate DP, Slonczewski JL (2005) Polyamine stress at high pH in Escherichia coli K-12. BMC Microbiol 5:1–8

    Article  CAS  Google Scholar 

  • Yoshida M, Kashiwagi K, Shigemasa A, Taniguchi S, Yamamoto K, Makinoshima H, Ishihama A, Igarashi K (2004) A unifying model for the role of polyamines in bacterial cell growth, the polyamine modulon. J Biol Chem 279:46008–46013

    Article  CAS  PubMed  Google Scholar 

  • You A, Tong JK, Grozinger CM, Schreiber SL (2001) CoREST is an integral component of the CoREST–human histone deacetylase complex. Proc Natl Acad Sci U S A 98:1454–1458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan ZL, Guan YJ, Chatterjee D, Chin YE (2005) Stat3 dimerization regulated by reversible acetylation of a single lysine residue. Science 307:269–273

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Reinberg D (2001) Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev 15:2343–2360

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Li N, Caron C, Matthias G, Hess D, Khochbin S, Matthias P (2003) HDAC-6 interacts with and deacetylates tubulin and microtubules in vivo. EMBO J 22:1168–1179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

This work was in part supported by grant BioFuture 0311852 from the Bundesministerium für Forschung und Technologie, Germany and HFSP grant RGY56/2004. The authors are grateful to colleagues in the field for sharing valuable information, in particular T. Beckers, R. Ficner, S. Guccione, M. Jung, A. Kuhn, F.-J. Meyer-Almes, R. Schneider, D. Wegener, H. Weinmann, and O. Witt. A.S. thanks K. Schwienhorst and the staff at the FSZ Hannover for critically reading the manuscript. A.S. also would like to thank all his coworkers for many years of fruitful research and a friendly atmosphere.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Schwienhorst.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hildmann, C., Riester, D. & Schwienhorst, A. Histone deacetylases—an important class of cellular regulators with a variety of functions. Appl Microbiol Biotechnol 75, 487–497 (2007). https://doi.org/10.1007/s00253-007-0911-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-007-0911-2

Keywords

Navigation