Skip to main content

Advertisement

Log in

A thermostable L-aspartate oxidase: a new tool for biotechnological applications

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

L-Amino acid oxidases (LAAOs) are homodimeric flavin adenine dinucleotide (FAD)-containing flavoproteins that catalyze the stereospecific oxidative deamination of L-amino acids to α-keto acids, ammonia, and hydrogen peroxide. Unlike the D-selective counterpart, the biotechnological application of LAAOs has not been thoroughly advanced because of the difficulties in their expression as recombinant protein in prokaryotic hosts. In this work, L-aspartate oxidase from the thermophilic archea Sulfolobus tokodaii (StLASPO, specific for L-aspartate and L-asparagine only) was efficiently produced as recombinant protein in E. coli in the active form as holoenzyme. This recombinant flavoenzyme shows the classical properties of FAD-containing oxidases. Indeed, StLASPO shows distinctive features that makes it attractive for biotechnological applications: high thermal stability (it is fully stable up to 80 °C) and high temperature optimum, stable activity in a broad range of pH (7.0–10.0), weak inhibition by the product oxaloacetate and by D-aspartate, and tight binding of the FAD cofactor. This latter property significantly distinguishes StLASPO from the E. coli counterpart. StLASPO represents an appropriate novel biocatalyst for the production of D-aspartate and a well-suited protein scaffold to evolve a LAAO activity by protein engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Caldinelli L, Molla G, Sacchi S, Pilone MS, Pollegioni L (2009) Relevance of weak flavin binding in human D-amino acid oxidase. Protein Sci 18:801–810

    PubMed  CAS  Google Scholar 

  • Caligiuri A, D’Arrigo P, Rosini E, Tessaro D, Molla G, Servi S, Pollegioni L (2006) Enzymatic conversion of unnatural amino acids by yeast D-amino acid oxidase. Adv Synth Catal 348:2183–2190

    Article  CAS  Google Scholar 

  • Casalin P, Pollegioni L, Curti B, Pilone MS (1991) A study on apoenzyme from Rhodotorula gracilis D-amino acid oxidase. Eur J Biochem 197:513–517

    Article  PubMed  CAS  Google Scholar 

  • Foster J, Moot AG (1980) Nicotinamide adenine dinucleotide biosynthesis and pyridine nucleotide cycle metabolism in microbial systems. Microbiol Rev 44:83–105

    PubMed  CAS  Google Scholar 

  • Geueke B, Hummel W (2002) A new bacterial L-amino acid oxidase with a broad substrate specificity: purification and characterization. Enz Micr Technol 31:77–87

    Article  CAS  Google Scholar 

  • Gibson QH, Swoboda BEP, Massey V (1964) Kinetics and mechanism of action of glucose oxidase. J Biol Chem 259:3927–3934

    Google Scholar 

  • Harris CM, Molla G, Pilone MS, Pollegioni L (1999) Studies on the reaction mechanism of Rhodotorula gracilis D-amino-acid oxidase. J Biol Chem 274:36233–36240

    Article  PubMed  CAS  Google Scholar 

  • Harris CM, Pollegioni L, Ghisla S (2001) pH and kinetic isotope effects in D-amino acid oxidase catalysis. Evidence for a concerted mechanism in substrate dehydrogenation via hydride transfer. Eur J Biochem 268:5504–5520

    Article  PubMed  CAS  Google Scholar 

  • Hefti MH, Vervoort J, van Berkel WJ (2003) Deflavination and reconstitution of flavoproteins. Eur J Biochem 270:4227–4242

    Article  PubMed  CAS  Google Scholar 

  • Macheroux P, Seth O, Bollschweiler C, Schwarz M, Kurfürst M, Au LC, Ghisla S (2001) L-amino-acid oxidase from the Malayan pit viper Calloselasma rhodostoma. Comparative sequence analysis and characterization of active and inactive forms of the enzyme. Eur J Biochem 268:1679–1686

    Article  PubMed  CAS  Google Scholar 

  • Massey V, Hemmerich P (1978) Photoreduction of flavoproteins and other biological compounds catalyzed by deazaflavins. Biochemistry 17:9–11

    Article  PubMed  CAS  Google Scholar 

  • Massey V, Hemmerich P (1980) Active-site probes of flavoproteins. Biochem Soc Trans 8:246–257

    PubMed  CAS  Google Scholar 

  • Mattevi A, Tedeschi G, Bacchella L, Coda A, Negri A, Ronchi S (1999) Structure of L-aspartate oxidase: implications for the succinate dehydrogenase/fumarate reductase oxidoreductase family. Structure 7:745–756

    Article  PubMed  CAS  Google Scholar 

  • Molla G, Porrini D, Job V, Motteran L, Vegezzi C, Campaner S, Pilone MS, Pollegioni L (2000) Role of Arginine 285 at the active site of Rhodotorula gracilis D-amino acid oxidase. A site-directed mutagenesis study. J Biol Chem 275:24715–24721

    Article  PubMed  CAS  Google Scholar 

  • Molla G, Sacchi S, Bernasconi M, Pilone MS, Fukui K, Pollegioni L (2006) Characterization of human D-amino acid oxidase. FEBS Lett 580:2358–2364

    Article  PubMed  CAS  Google Scholar 

  • Mortarino M, Negri A, Tedeschi G, Simonic T, Duga S, Gassen HG, Ronchi S (1996) L-aspartate oxidase from Escherichia coli. I. Characterization of coenzyme binding and product inhibition. Eur J Biochem 239:418–426

    Article  PubMed  CAS  Google Scholar 

  • Moustafa IM, Foster S, Lyubimov AY, Vrielink A (2006) Crystal structure of LAAO from Calloselasma rhodostoma with an L-phenylalanine substrate: insights into structure and mechanism. J Mol Biol 364:991–1002

    Article  PubMed  CAS  Google Scholar 

  • Mutaguchi Y, Ohmori T, Sakuraba H, Yoneda K, Doi K, Ohshima T (2011) Visible wavelength spectrophotometric assays of L-aspartate and D-aspartate using hyperthermophilic enzyme systems. Anal Chem 409:1–6

    CAS  Google Scholar 

  • Pawelek PD, Cheah J, Coulombe R, Macheroux P, Ghisla S, Vrielink A (2000) The structure of L-amino acid oxidase reveals the substrate trajectory into an enantiomerically conserved active site. EMBO J 19:4204–4215

    Article  PubMed  CAS  Google Scholar 

  • Pilone MS, Pollegioni L (2002) D-amino acid oxidase as an industrial biocatalyst. Biocatal Biotransf 20:145–159

    Article  CAS  Google Scholar 

  • Pollegioni L, Molla G (2011) New biotech applications from evolved D-amino acid oxidases. Trends Biotechnol 29:276–283

    Article  PubMed  CAS  Google Scholar 

  • Pollegioni L, Butò S, Tischer W, Ghisla S, Pilone MS (1993a) Characterization of D-amino acid oxidase from Trigonopsis variabilis. Biochem Mol Biol Int 31:709–717

    PubMed  CAS  Google Scholar 

  • Pollegioni L, Langkau B, Tischer W, Ghisla S, Pilone MS (1993b) Kinetic mechanism of D-amino acid oxidase from Rhodotorula gracilis and Trigonopsis variabilis. J Biol Chem 268:13850–13857

    PubMed  CAS  Google Scholar 

  • Pollegioni L, Piubelli L, Sacchi S, Pilone MS, Molla G (2007) Physiological functions of D-amino acid oxidases: from yeast to humans. Cell Mol Life Sci 64:1373–1394

    Article  PubMed  CAS  Google Scholar 

  • Pollegioni L, Molla G, Sacchi S, Rosini E, Verga R, Pilone MS (2008) Properties and applications of microbial D-amino acid oxidases: current state and perspectives. Appl Microbiol Biotechnol 78:1–16

    Article  PubMed  CAS  Google Scholar 

  • Ponnudurai G, Chung MC, Tan NH (1994) Purification and properties of the L-amino acid oxidase from Malayan pit viper (Calloselasma rhodostoma) venom. Arch Biochem Biophys 313:73–78

    Article  Google Scholar 

  • Sakuraba H, Satomura T, Kawakami R, Yamamoto S, Kawarabayasi Y, Kikuchi H, Ohshima T (2002) L-aspartate oxidase is present in the anaerobic hyperthermophilic archaeon Pyrococcus horikoshii OT-3: characteristics and role in the de novo biosynthesis of nicotinamide adenine dinucleotide proposed by genome sequencing. Extremophiles 6:275–281

    Article  PubMed  CAS  Google Scholar 

  • Sakuraba H, Yoneda K, Asai I, Tsuge H, Katunuma N, Ohshima T (2008) Structure of L-aspartate oxidase from the hyperthermophilic archaeon Sulfolobus tokodaii. Biochim Biophys Acta 1784:563–571

    Article  PubMed  CAS  Google Scholar 

  • Seifert J, Kunz N, Flachmann R, Läufer A, Jany KD, Gassen HG (1990) Expression of the E. coli nadB gene and characterization of the gene product L-aspartate oxidase. Biol Chem Hoppe-Seyler 371:239–248

    Article  PubMed  CAS  Google Scholar 

  • Tedeschi G, Negri A, Mortarino M, Ceciliani F, Simonic T, Faotto L, Ronchi S (1996) L-aspartate oxidase from Escherichia coli. II. Interaction with C4 dicarboxylic acids and identification of a novel L-aspartate: fumarate oxidoreductase activity. Eur J Biochem 239:427–433

    Article  PubMed  CAS  Google Scholar 

  • Torii S, Naito M, Tsuruo T (1997) Apoxin I, a novel apoptosis-inducing factor with L-amino acid oxidase activity purified from western diamondback rattlesnake venom. J Biol Chem 272:9539–9542

    Article  PubMed  CAS  Google Scholar 

  • Volontè F, Pollegioni L, Molla G, Frattini L, Marinelli F, Piubelli L (2010) Production of recombinant cholesterol oxidase containing covalent-bound FAD in Escherichia coli. BMC Biotechnol 10:33

    Article  PubMed  Google Scholar 

  • Zeller A, Maritz A (1944) Uber eine neue L-aminosaure-oxydase. Helv Chim Acta 27:1888–1902

    Article  CAS  Google Scholar 

  • Zhao M, Bada JL (1995) Determination of alpha-dialkyl amino acids and their enantiomers in geological samples by high-performance liquid chromatography after derivatization with a chiral adduct of o-phthaldialdehyde. J Chromatogr A 690:55–63

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Fondo di Ateneo per la Ricerca to L. Pollegioni and G. Molla. We are grateful for the support of Consorzio Interuniversitario per le Biotecnologie. D. Bifulco is a student of the Ph.D. program in Biotechnology, School in Biological and Medical Sciences, University of Insubria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loredano Pollegioni.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 419 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bifulco, D., Pollegioni, L., Tessaro, D. et al. A thermostable L-aspartate oxidase: a new tool for biotechnological applications. Appl Microbiol Biotechnol 97, 7285–7295 (2013). https://doi.org/10.1007/s00253-013-4688-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-4688-1

Keywords

Navigation