Skip to main content

Advertisement

Log in

Selective degradation of p62 by autophagy

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

The autophagy–lysosome pathway is a highly conserved bulk degradation system in eukaryotes. During starvation, cytoplasmic constituents are non-selectively degraded by autophagy, and the resulting amino acids are utilized for cell survival. By taking advantage of mouse genetics, many physiological functions of mammalian autophagy have been uncovered. Growing lines of evidences have revealed the essential role of constitutive (or basal) autophagy in cellular homeostasis through its selectivity. p62, one of the selective substrates for autophagy, plays a key role in the formation of cytoplasmic proteinaceous inclusion, a hallmark of conformational diseases such as Alzheimer’s disease, Parkinson’s disease, and various chronic liver disorders. In this review, we discuss the physiological roles of the selective turnover of p62 by autophagy and their molecular mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

Ape1:

Aminopeptidase I

Atg:

Autophagy-related

DISC:

Death-inducing signaling complex

LC3:

Microtubule-associated protein 1 light chain 3

LIR:

LC3-interacting region

LRS:

LC3 recognition sequence

PB1:

Phox and Bem1p

PE:

Phosphatidylethanolamine

UBA:

Ubiquitin-associated domain

UPS:

Ubiquitin–proteasome system

References

  1. Goldberg AL (2003) Protein degradation and protection against misfolded or damaged proteins. Nature 426:895–899

    Article  CAS  PubMed  Google Scholar 

  2. Mizushima N (2007) Autophagy: process and function. Genes Dev 21:2861–2873

    Article  CAS  PubMed  Google Scholar 

  3. Nakatogawa H, Suzuki K, Kamada Y, Ohsumi Y (2009) Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Biol 10:458–467

    Article  CAS  PubMed  Google Scholar 

  4. Yang Z, Klionsky DJ (2009) An overview of the molecular mechanism of autophagy. Curr Top Microbiol Immunol 335:1–32

    Article  CAS  PubMed  Google Scholar 

  5. Tsukada M, Ohsumi Y (1993) Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett 333:169–174

    Article  CAS  PubMed  Google Scholar 

  6. Kuma A, Hatano M, Matsui M et al (2004) The role of autophagy during the early neonatal starvation period. Nature 432:1032–1036

    Article  CAS  PubMed  Google Scholar 

  7. Tsukamoto S, Kuma A, Murakami M et al (2008) Autophagy is essential for preimplantation development of mouse embryos. Science 321:117–120

    Article  CAS  PubMed  Google Scholar 

  8. Komatsu M, Ueno T, Waguri S et al (2007) Constitutive autophagy: vital role in clearance of unfavorable proteins in neurons. Cell Death Differ 14:887–894

    CAS  PubMed  Google Scholar 

  9. Komatsu M, Waguri S, Koike M et al (2007) Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell 131:1149–1163

    Article  CAS  PubMed  Google Scholar 

  10. Komatsu M, Waguri S, Ueno T et al (2005) Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol 169:425–434

    Article  CAS  PubMed  Google Scholar 

  11. Komatsu M, Waguri S, Chiba T et al (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441:880–884

    Article  CAS  PubMed  Google Scholar 

  12. Hara T, Nakamura K, Matsui M et al (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441:885–889

    Article  CAS  PubMed  Google Scholar 

  13. Nakatogawa H, Ichimura Y, Ohsumi Y (2007) Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion. Cell 130:165–178

    Article  CAS  PubMed  Google Scholar 

  14. Kabeya Y, Mizushima N, Ueno T et al (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19:5720–5728

    Article  CAS  PubMed  Google Scholar 

  15. Fujita N, Itoh T, Omori H et al (2008) The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy. Mol Biol Cell 19:2092–2100

    Article  CAS  PubMed  Google Scholar 

  16. Bjorkoy G, Lamark T, Brech A et al (2005) p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol 171:603–614

    Article  PubMed  CAS  Google Scholar 

  17. Pankiv S, Clausen TH, Lamark T et al (2007) p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 282:24131–24145

    Article  CAS  PubMed  Google Scholar 

  18. Laurin N, Brown JP, Morissette J, Raymond V (2002) Recurrent mutation of the gene encoding sequestosome 1 (SQSTM1/p62) in Paget disease of bone. Am J Hum Genet 70:1582–1588

    Article  CAS  PubMed  Google Scholar 

  19. Moscat J, Diaz-Meco MT, Albert A, Campuzano S (2006) Cell signaling and function organized by PB1 domain interactions. Mol Cell 23:631–640

    Article  CAS  PubMed  Google Scholar 

  20. Jin Z, Li Y, Pitti R et al (2009) Cullin3-based polyubiquitination and p62-dependent aggregation of caspase-8 mediate extrinsic apoptosis signaling. Cell 137:721–735

    Article  CAS  PubMed  Google Scholar 

  21. Nakaso K, Yoshimoto Y, Nakano T et al (2004) Transcriptional activation of p62/A170/ZIP during the formation of the aggregates: possible mechanisms and the role in Lewy body formation in Parkinson’s disease. Brain Res 1012:42–51

    Article  CAS  PubMed  Google Scholar 

  22. Nagaoka U, Kim K, Jana NR et al (2004) Increased expression of p62 in expanded polyglutamine-expressing cells and its association with polyglutamine inclusions. J Neurochem 91:57–68

    Article  CAS  PubMed  Google Scholar 

  23. Nan L, Wu Y, Bardag-Gorce F et al (2004) p62 is involved in the mechanism of Mallory body formation. Exp Mol Pathol 77:168–175

    Article  CAS  PubMed  Google Scholar 

  24. Ichimura Y, Kumanomidou T, Sou YS et al (2008) Structural basis for sorting mechanism of p62 in selective autophagy. J Biol Chem 283:22847–22857

    Article  CAS  PubMed  Google Scholar 

  25. Shvets E, Fass E, Scherz-Shouval R, Elazar Z (2008) The N-terminus and Phe52 residue of LC3 recruit p62/SQSTM1 into autophagosomes. J Cell Sci 121:2685–2695

    Article  CAS  PubMed  Google Scholar 

  26. Noda NN, Kumeta H, Nakatogawa H et al (2008) Structural basis of target recognition by Atg8/LC3 during selective autophagy. Genes Cells 13:1211–1218

    Article  CAS  PubMed  Google Scholar 

  27. Schweers RL, Zhang J, Randall MS et al (2007) NIX is required for programmed mitochondrial clearance during reticulocyte maturation. Proc Natl Acad Sci USA 104:19500–19505

    Article  CAS  PubMed  Google Scholar 

  28. Sandoval H, Thiagarajan P, Dasgupta SK et al (2008) Essential role for Nix in autophagic maturation of erythroid cells. Nature 454:232–235

    Article  CAS  PubMed  Google Scholar 

  29. Novak I, Kirkin V, McEwan DG et al (2010) Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Rep 11:45–51

    Article  CAS  PubMed  Google Scholar 

  30. Satoo K, Noda NN, Kumeta H et al (2009) The structure of Atg4B-LC3 complex reveals the mechanism of LC3 processing and delipidation during autophagy. EMBO J 28:1341–1350

    Article  CAS  PubMed  Google Scholar 

  31. Narendra DP, Jin SM, Tanaka A et al (2010) PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol 8:e1000298

    Article  PubMed  CAS  Google Scholar 

  32. Narendra D, Tanaka A, Suen DF, Youle RJ (2008) Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol 183:795–803

    Article  CAS  PubMed  Google Scholar 

  33. Geisler S, Holmstrom KM, Skujat D et al (2010) PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol 12:119–131

    Article  CAS  PubMed  Google Scholar 

  34. Duran A, Linares JF, Galvez AS et al (2008) The signaling adaptor p62 is an important NF-kappaB mediator in tumorigenesis. Cancer Cell 13:343–354

    Article  CAS  PubMed  Google Scholar 

  35. Komatsu M, Kurokawa H, Waguri S et al (2010) The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat Cell Biol 12:213–223

    CAS  PubMed  Google Scholar 

  36. Itoh K, Chiba T, Takahashi S et al (1997) An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun 236:313–322

    Article  CAS  PubMed  Google Scholar 

  37. Nakai A, Yamaguchi O, Takeda T et al (2007) The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nat Med 13:619–624

    Article  CAS  PubMed  Google Scholar 

  38. Ebato C, Uchida T, Arakawa M et al (2008) Autophagy is important in islet homeostasis and compensatory increase of beta cell mass in response to high-fat diet. Cell Metab 8:325–332

    Article  CAS  PubMed  Google Scholar 

  39. Kirkin V, Lamark T, Sou YS et al (2009) A role for NBR1 in autophagosomal degradation of ubiquitinated substrates. Mol Cell 33:505–516

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by Grants-in-Aid for Science Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan (M.K.) and from the Japan Science and Technology Agency and the Ministry of Education, Science and Culture of Japan (M.K.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaaki Komatsu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ichimura, Y., Komatsu, M. Selective degradation of p62 by autophagy. Semin Immunopathol 32, 431–436 (2010). https://doi.org/10.1007/s00281-010-0220-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-010-0220-1

Keywords

Navigation