Skip to main content

Advertisement

Log in

Sensory acquisition in active sensing systems

  • Review
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

A defining feature of active sensing is the use of self-generated energy to probe the environment. Familiar biological examples include echolocation in bats and dolphins and active electrolocation in weakly electric fish. Organisms that utilize active sensing systems can potentially exert control over the characteristics of the probe energy, such as its intensity, direction, timing, and spectral characteristics. This is in contrast to passive sensing systems, which rely on extrinsic energy sources that are not directly controllable by the organism. The ability to control the probe energy adds a new dimension to the task of acquiring relevant information about the environment. Physical and ecological constraints confronted by active sensing systems include issues of signal propagation, attenuation, speed, energetics, and conspicuousness. These constraints influence the type of energy that organisms use to probe the environment, the amount of energy devoted to the process, and the way in which the nervous system integrates sensory and motor functions for optimizing sensory acquisition performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

JAR:

Jamming avoidance response

References

  • Assad C, Rasnow B, Stoddard PK (1999) Electric organ discharges and electric images during electrolocation. J Exp Biol 202:1185–1193

    PubMed  CAS  Google Scholar 

  • Au WWL (1993) The sonar of dolphins. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Au WWL (2004) A comparison of the sonar capabilities of bats and dolphins. In: Thomas JA, Moss CF, Vater M (eds) Echolocation in bats and dolphins. University of Chicago Press, Chicago, pp xiii–xxvii

    Google Scholar 

  • Au WWL, Benoit-Bird KJ (2003) Automatic gain control in the echolocation system of dolphins. Nature 423:861–863

    PubMed  CAS  Google Scholar 

  • Au WWL, Snyder KJ (1980) Long-range target detection in open waters by an echolocating atlantic bottlenose dolphin (Tursiops truncatus). J Acoust Soc Am 68:1077–1084

    Google Scholar 

  • Au WWL, Floyd RW, Penner RH, Murchison AE (1974) Measurement of echolocation signals of the atlantic bottlenose dolphin, Tursiops truncatus Montagu, in open waters. J Acoust Soc Am 56:1280–1290

    PubMed  CAS  Google Scholar 

  • Bajcsy R (1988) Active perception. Proc IEEE 76:996–1005

    Google Scholar 

  • Ballard DH (1991) Animate vision. Artif Intell 48:57–86

    Google Scholar 

  • Barrett-Lennard LG, Ford JKB, Heise KA (1996) The mixed blessing of echolocation: differences in sonar use by fish-eating and mammal-eating killer whales. Anim Behav 51:553–565

    Google Scholar 

  • Bass AH (1986) Electric organs revisited. In: Bullock TH, Heiligenberg W (eds) Electroreception. Wiley, New York, pp 13–70

    Google Scholar 

  • Bell CC, Bradbury J, Russell CJ (1976) The electric organ of a mormyrid fish as a current and voltage source. J Comp Physiol A 110:65–88

    Google Scholar 

  • Berg RW, Kleinfeld D (2003) Rhythmic whisking by rat: retraction as well as protraction of the vibrissae is under active muscular control. J Neurophysiol 89:104–117

    PubMed  Google Scholar 

  • Blake A (1995) Active vision. In: Arbib MA (ed) The handbook of brain theory and neural networks. MIT Press, Cambridge/Massachusetts, pp 61–63

    Google Scholar 

  • Bonner JT, Suthers HB, Odell GM (1986) Ammonia orients cell masses and speeds up aggregating cells of slime molds. Nature 323:630–632

    CAS  Google Scholar 

  • Brecht M, Preilowski B, Merzenich MM (1997) Functional architecture of the mystacial vibrissae. Behav Brain Res 84:81–97

    PubMed  CAS  Google Scholar 

  • Buck JB (1978) Functions and evolutions of bioluminescence. In: Herring PJ (ed) Bioluminescence in action. Academic, New York, pp 419–460

    Google Scholar 

  • Bullock TH, Heiligenberg W (1986) Electroreception. Wiley, New York

    Google Scholar 

  • von Campenhausen C, Riess I, Weissert R (1981) Detection of stationary objects by the blind cave fish Anoptichthys jordani (Characidae). J Comp Physiol A 143:369–374

    Google Scholar 

  • Carr CE, Maler L, Sas E (1982) Peripheral organization and central projections of the electrosensory nerves in gymnotiform fish. J Comp Neurol 211:139–153

    PubMed  CAS  Google Scholar 

  • Carvell GE, Simons DJ (1990) Biometric analyses of vibrissal tactile discrimination in the rat. J Neurosci 10:2638–2648

    PubMed  CAS  Google Scholar 

  • Chen L, House JH, Krahe R, Nelson ME (2005) Modeling signal and background components of electrosensory scenes. J Comp Physiol A 168:331–345

    Google Scholar 

  • Cranford TW, Amundin M (2004) Biosonar pulse production in odontocetes: the state of our knowledge. In: Thomas JA, Moss CF, Vater M (eds) Echolocation in bats and dolphins. University of Chicago Press, Chicago, pp 27–35

    Google Scholar 

  • Douglas RH, Partridge JC (1997) On the visual pigments of deep-sea fish. J Fish Biol 50:68–85

    CAS  Google Scholar 

  • Douglas RH, Partridge JC, Dulai K, Hunt D, Mullineaux CW, Tauber A, Hynninen PH (1998) Dragon fish see using chlorophyll. Nature 393:423–424

    CAS  Google Scholar 

  • Dudley R, Winter Y (2002) Hovering flight mechanics of neotropical flower bats (Phyllostomidae: Glossophaginae) in normodense and hypodense gas mixtures. J Exp Biol 205:3669–3677

    PubMed  Google Scholar 

  • Dürr V, Konig Y, Kittmann R (2001) The antennal motor system of the stick insect Carausius morosus: anatomy and antennal movement pattern during walking. J Comp Physiol A 187:131–144

    PubMed  Google Scholar 

  • Dusenbery DB (1992) Sensory ecology: how organisms acquire and respond to information. WH Freeman, New York

    Google Scholar 

  • von der Emde G (1999) Active electrolocation of objects in weakly electric fish. J Exp Biol 202:1205–1215

    PubMed  Google Scholar 

  • von der Emde G (2006) Non-visual environmental imaging and object detection through active electrolocation in weakly electric fish. J Comp Physiol A (in press)

  • von der Emde G, Ringer T (1992) Electrolocation of capacitive objects in four species of pulse-type weakly electric fish. I. Discrimination performance. Ethology 91:326–338

    Article  Google Scholar 

  • Erwin H, Wilson WW, Moss CF (2001) A computational model of sensorimotor integration in bat echolocation. J Acoust Soc Am 110:1176–1187

    PubMed  CAS  Google Scholar 

  • Evans WE (1973) Echolocation by marine delphinids and one species of freshwater dolphin. J Acoust Soc Am 54:191–199

    Google Scholar 

  • Fenton MB (2004) Aerial-feeding bats: getting the most out of echolocation. In: Thomas JA, Moss CF, Vater M (eds) Echolocation in bats and dolphins. University of Chicago Press, Chicago, pp 350–355

    Google Scholar 

  • Fernald RD (1997) The evolution of eyes. Brain Behav Evol 50:253–259

    PubMed  CAS  Google Scholar 

  • Franchina CR, Stoddard PK (1998) Plasticity of the electric organ discharge waveform of the electric fish Brachyhypopomus pinnicaudatus. I. Quantification of day–night changes. J Comp Physiol A 183:759–768

    PubMed  CAS  Google Scholar 

  • Fuzessery ZM, Hartley DJ, Wenstrup JJ (1992) Spatial processing within the moustache bat echolocation system: possible mechanisms for optimization. J Comp Physiol A 170:57–71

    PubMed  CAS  Google Scholar 

  • Gao P, Bermejo R, Zeigler HP (2001) Vibrissa deafferentation and rodent whisking patterns: behavioral evidence for a central pattern generator. J Neurosci 21:5374–5380

    PubMed  CAS  Google Scholar 

  • Ghose K, Moss CF (2003) The sonar beam pattern of a flying bat as it tracks tethered insects. J Acoust Soc Am 114:1120–1131

    PubMed  Google Scholar 

  • Hartley DJ (1992) Stabilization of perceived echo amplitudes in echolocating bats. I. Echo detection and automatic gain control in the big brown bat, Eptesicus fuscus, and the fishing bat, Noctilio leporinus. J Acoust Soc Am 91:1120–1132

    PubMed  CAS  Google Scholar 

  • Hartley DJ, Suthers RA (1989) The sound emission pattern of the echolocating bat, Eptesicus fuscus. J Acoust Soc Am 85:1348–1351

    Google Scholar 

  • Hartmann MJ (2001) Active sensing capabilities of the rat whisker system. Auton Robot 11:249–254

    Google Scholar 

  • Hartmann MJ, Johnson NJ, Towal RB, Assad C (2003) Mechanical characteristics of rat vibrissae: resonant frequencies and damping in isolated whiskers and in the awake behaving animal. J Neurosci 23:6510–6519

    PubMed  CAS  Google Scholar 

  • Hassan ES (1989) Hydrodynamic imaging of the surroundings by the lateral line of the blind cave fish Anoptichthys jordani. In: Coombs S, Peter G, Heinrich M (eds) The mechanosensory lateral line: neurobiology and evolution. Springer, Berlin Heidelberg New York, pp 217–227

    Google Scholar 

  • Haygood MG (1993) Light organ symbioses in fishes. Crit Rev Microbiol 19:191–216

    PubMed  CAS  Google Scholar 

  • Heiligenberg W (1975) Theoretical and experimental approaches to spatial aspects of electrolocation. J Comp Physiol A 103:247–272

    Google Scholar 

  • Heiligenberg W (1991) Neural nets in electric fish. The MIT Press, Cambridge/Massachusetts

    Google Scholar 

  • Heiligenberg W, Baker C, Bastian J (1978) The jamming avoidance response in gymnotoid pulse species: a mechanism to minimize the probability of pulse train coincidence. J Comp Physiol A 124:211–224

    Google Scholar 

  • Henze D, O’Neill WE (1991) The emission pattern of vocalizations and directionality of the sonar system in the echolocating bat, Pteronotus parnelli. J Acoust Soc Am 89:2430–2434

    PubMed  CAS  Google Scholar 

  • Herzing DL (2004) Social and nonsocial uses of echolocation in free-ranging Stenella frontalis and Tursiops truncatus. In: Thomas JA, Moss CF, Vater M (eds) Echolocation in bats and dolphins. University of Chicago Press, Chicago, pp 404–410

    Google Scholar 

  • Holderied MW, von Helversen O (2003) Echolocation range and wingbeat period match in aerial-hawking bats. Proc R Soc Lond B 270:2293–2299

    CAS  Google Scholar 

  • Holland RA, Waters DA, Rayner JMV (2004) Echolocation signal structure in the megachiropteran bat Rousettus aegyptiacus Geoffroy 1810. J Exp Biol 207:4361–4369

    PubMed  Google Scholar 

  • Hopkins CD (1976) Stimulus filtering and electroreception: tuberous electroreceptors in three species of gymnotoid fish. J Comp Physiol A 111:171–207

    Google Scholar 

  • Hopkins CD (1986) Temporal structure of non-propagated electric communication. Brain Behav Evol 28:43–59

    PubMed  CAS  Google Scholar 

  • Hopkins CD (1999) Design features for electric communication. J Exp Biol 202:1217–1228

    PubMed  CAS  Google Scholar 

  • Hopkins CD, Shieh KT, McBride DW, Winslow M (1997) A quantitative analysis of passive electrolocation behavior in electric fish. Brain Behav Evol 50(suppl 1):32–59

    PubMed  Google Scholar 

  • Horseman BG, Gebhardt M, Honegger HW (1997) Involvement of the suboesophageal and thoracic ganglia in the control of antennal movements in crickets. J Comp Physiol A 181:195–204

    Google Scholar 

  • Hudson RD (1969) Infrared system engineering. Wiley-Interscience, New York, p 144

    Google Scholar 

  • Johnson GD, Rosenblatt RH (1988) Mechanisms of light organ occlusion in flashlight fishes, family Anomalopidae (Teleostei, Beryciformes), and the evolution of the group. Zool J Linn Soc 94:65–96

    Google Scholar 

  • Jones G (1999) Scaling of echolocation call parameters in bats. J Exp Biol 202:3359–3367

    PubMed  CAS  Google Scholar 

  • Julian D, Crampton WGR, Wolhgemuth SE, Albert JS (2003) Oxygen consumption in weakly electric neotropical fishes. Oecologia 137:502–511

    PubMed  Google Scholar 

  • Kalko EK (1995) Insect pursuit, prey capture and echolocation in pipistrelle bats (Microchiroptera). Anim Behav 50:861–880

    Google Scholar 

  • Knudsen EI (1974) Behavioral thresholds to electric signals in high frequency electric fish. J Comp Physiol A 91:333–353

    Google Scholar 

  • Knudsen EI (1975) Spatial aspects of the electric fields generated by weakly electric fish. J Comp Physiol A 99:103–118

    Google Scholar 

  • Krause AF, Dürr V (2004) Tactile efficiency of insect antennae with two hinge joints. Biol Cybern 91:168–181

    PubMed  Google Scholar 

  • Lannoo MJ, Lannoo SJ (1993) Why do electric fishes swim backwards? An hypothesis based on gymnotiform foraging behavior interpreted through sensory constraints. Env Biol Fishes 36:157–165

    Google Scholar 

  • Lissmann HW (1958) On the function and evolution of electric organs in fish. J Exp Biol 35:156–191

    Google Scholar 

  • MacIver MA, Sharabash NM, Nelson ME (2001) Prey-capture behavior in gymnotid electric fish: motion analysis and effects of water conductivity. J Exp Biol 204:543–557

    PubMed  CAS  Google Scholar 

  • MacIver MA, Fontaine E, Burdick JW (2004) Designing future underwater vehicles: principles and mechanisms of the weakly electric fish. IEEE J Oceanic Eng 29:651–659

    Google Scholar 

  • Madsen PT, Kerr I, Payne R (2004) Echolocation clicks of two free-ranging, oceanic delphinids with different food preferences: false killer whales Pseudorca crassidens and Risso’s dolphins Grampus griseus. J Exp Biol 207:1811–1823

    PubMed  CAS  Google Scholar 

  • Madsen PT, Johnson M, de Soto NA, Zimmer WMX, Tyack P (2005) Biosonar performance of foraging beaked whales (Mesoplodon densirostris). J Exp Biol 208:181–194

    PubMed  CAS  Google Scholar 

  • Mann DA, Lu ZM, Hastings MC, Popper AN (1998) Detection of ultrasonic tones and simulated dolphin echolocation clicks by a teleost fish, the American shad (Alosa sapidissima). J Acoust Soc Am 104:562–568

    PubMed  CAS  Google Scholar 

  • McCosker JE (1977) Flashlight fishes. Sci Am 236(3):106–114

    Article  PubMed  CAS  Google Scholar 

  • Metzner W (1999) Neural circuitry for communication and jamming avoidance in gymnotiform electric fish. J Exp Biol 202:1365–1375

    PubMed  CAS  Google Scholar 

  • Metzner W, Zhang SY, Smotherman M (2002) Doppler-shift compensation behavior in horseshoe bats revisited: auditory feedback controls both a decrease and an increase in call frequency. J Exp Biol 205:1607–1616

    PubMed  Google Scholar 

  • Miller LA, Surlykke A (2001) How some insects detect and avoid being eaten by bats: tactics and countertactics of prey and predator. Bioscience 51:570–581

    Google Scholar 

  • Moller P (1995) Electric fishes: history and behavior. Chapman & Hall, London

    Google Scholar 

  • Montgomery JC, Coombs S, Baker CF (2001) The mechanosensory lateral line system of the hypogean form of Astyanax fasciatus. Env Biol Fish 62:87–96

    Google Scholar 

  • Moortgat KT, Keller CH, Bullock TH, Sejnowski TJ (1998) Submicrosecond pacemaker precision is behaviorally modulated: the gymnotiform electromotor pathway. Proc Natl Acad Sci USA 95:4684–4689

    PubMed  CAS  Google Scholar 

  • Munk O (1999) The escal photophore of ceratioids (Pisces; Ceratioidei): a review of structure and function. Acta Zool 80:265–284

    Google Scholar 

  • Norberg UML (2002) Structure, form, and function of flight in engineering and the living world. J Morphol 252:52–81

    Google Scholar 

  • Partridge JC, Douglas RH (1995) Far red sensitivity of dragon fish Aristostomias titmanni. Nature 375:21–22

    CAS  Google Scholar 

  • Portfors CV, Wenstrup JJ (1999) Delay-tuned neurons in the inferior colliculus of the mustached bat: implications for analyses of target distance. J Neurophysiol 82:1326–1338

    PubMed  CAS  Google Scholar 

  • Post N, von der Emde G (1999) The ‘novelty response’ in an electric fish: response properties and habituation. Physiol Behav 68:115–128

    PubMed  CAS  Google Scholar 

  • Rasnow B (1996) The effects of simple objects on the electric field of Apteronotus. J Comp Physiol A 178:397–411

    Google Scholar 

  • Ridoux V, Guinet C, Liret C, Creton P, Steenstrup R, Beauplet G (1997) A video sonar as a new tool to study marine mammals in the wild: measurements of dolphin swimming speed. Mar Mammal Sci 13:196–206

    Google Scholar 

  • Russell CJ, Myers JP, Bell CC (1974) The echo response in Gnathonemus petersii Mormyridae. J Comp Physiol A 92:181–200

    Google Scholar 

  • Schnitzler HU (1973) Control of Doppler shift compensation in the greater horseshoe bat, Rhinolophus ferrumequinum. J Comp Physiol A 82:79–92

    Google Scholar 

  • Schnitzler HU, Kalko EK (2001) Echolocation by insect-eating bats. Bioscience 51:557–569

    Google Scholar 

  • Schnitzler H, Moss CF, Denzinger A (2003) From spatial orientation to food acquisition in echolocating bats. Trends Ecol Evol 18:386–394

    Google Scholar 

  • Schotten M, Au WWL, Lammers MO, Aubauer R (2004) Echolocation recordings and localization of wild spinner dolphins (Stenella longirostris) and pantropical spotted dolphins (S. attenuata) using a four-hydrophone array. In: Thomas JA, Moss CF, Vater M (eds) Echolocation in bats and dolphins. University of Chicago Press, Chicago, pp 393–400

    Google Scholar 

  • Schuller G, Pollak G (1979) Disproportionate frequency representation in the inferior colliculus of Doppler-compensating greater horseshoe bats, Rhinolophus ferrumequinum. J Comp Physiol A 132:47–54

    Google Scholar 

  • Simmons JA, Moffat AJM, Masters WM (1992) Sonar gain control and echo detection thresholds in the echolocating bat, Eptesicus fuscus. J Acoust Soc Am 91:1150–1163

    PubMed  CAS  Google Scholar 

  • Speakman JR, Racey PA (1991) No cost of echolocation for bats in flight. Nature 350:421–423

    PubMed  CAS  Google Scholar 

  • Stoddard PK (1999) Predation enhances complexity in the evolution of electric fish signals. Nature 400:254–256

    PubMed  CAS  Google Scholar 

  • Stoddard PK (2002) Electric signals: predation, sex, and environmental constraints. Adv Stud Behav 31:201–242

    Article  Google Scholar 

  • Surlykke A, Moss CF (2000) Echolocation behavior of the big brown bat, Eptesicus fuscus, in the field and the laboratory. J Acoust Soc Am 108:2419–2429

    PubMed  CAS  Google Scholar 

  • Teyke T (1988) Flow field, swimming velocity and boundary layer: parameters which affect the stimulus for the lateral line organ in blind fish. J Comp Physiol A 163:53–61

    PubMed  CAS  Google Scholar 

  • Tian B, Schnitzler HU (1997) Echolocation signals of the greater horseshoe bat (Rhinolophus ferrumequinum) in transfer flight and during landing. J Acoust Soc Am 101:2347–2364

    PubMed  CAS  Google Scholar 

  • Thomas JA, Moss CF, Vater M (2004) Echolocation in bats and dolphins. University of Chicago Press, Chicago

    Google Scholar 

  • Toerring MJ, Moller P (1984) Locomotor and electric displays associated with electrolocation during exploratory behavior in mormyrid fish. Behav Brain Res 12:291–306

    PubMed  CAS  Google Scholar 

  • Trappe M, Schnitzler HU (1982) Doppler-shift compensation in insect-catching horseshoe bats. Naturwissenschaften 69:193–196

    Google Scholar 

  • Ulanovsky N, Fenton MB, Tsoar A, Korine C (2004) Dynamics of jamming avoidance in echolocating bats. Proc R Soc Lond B 271:1467–1475

    Google Scholar 

  • Wanzenbock J, Scheimer F (1989) Prey detection in cyprinids during early development. Can J Fish Aquat Sci 46:995–1001

    Google Scholar 

  • Weihs D (2004) The hydrodynamics of dolphin drafting. J Biol 3:801–816

    Google Scholar 

  • Weissert R, von Campenhausen C (1981) Discrimination between stationary objects by the blind cave fish Anoptichthys jordani (Characidae). J Comp Physiol A 143:375–381

    Google Scholar 

  • Wenstrup JJ (1999) Frequency organization and responses to complex sounds in the medial geniculate body of the mustached bat. J Neurophysiol 82:2528–2544

    PubMed  CAS  Google Scholar 

  • Westby GWM (1988) The ecology, discharge diversity and predatory behavior of gymnotiform electric fish in the coastal streams of French Guiana. Behav Ecol Soc 22:341–354

    Google Scholar 

  • Widder EA, Latz MF, Herring PJ, Case JF (1984) Far-red bioluminescence from two deep-sea fishes. Science 225:512–514

    PubMed  CAS  Google Scholar 

  • Wotton JM, Jenison RL, Hartley DJ (1997) The combination of echolocation emission and ear reception enhances directional spectral cues of the big brown bat, Eptesicus fuscus. J Acoust Soc Am 101:1723–1733

    PubMed  CAS  Google Scholar 

  • Xitco MJ, Roitblat HL (1996) Object recognition through eavesdropping: passive echolocation in bottlenose dolphins. Anim Learn Behav 24:355–365

    Google Scholar 

  • Zakon HH (1987) Hormone-mediated plasticity in the electrosensory system of weakly electric fish. Trends Neurosci 10:416–421

    Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the National Institute of Mental Health to M.E.N. (R01 MH49242); M.A.M. was supported in part by a grant from the Whitaker Foundation to Northwestern University. We thank Dr. Rüdiger Krahe for stimulating discussions and helpful feedback.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Nelson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nelson, M., MacIver, M. Sensory acquisition in active sensing systems. J Comp Physiol A 192, 573–586 (2006). https://doi.org/10.1007/s00359-006-0099-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-006-0099-4

Keywords

Navigation