Skip to main content
Log in

Peripheral and central processing of lateral line information

  • Review
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

The lateral line is a hydrodynamic sensory system that allows fishes and aquatic amphibians to detect the water motions caused, for instance, by conspecifics, predators or prey. Typically the peripheral lateral line of fishes consists of several hundred neuromasts spread over the head, trunk, and tail fin. Lateral line neuromasts are mechanical low-pass filters that have an operating range from <1 Hz up to about 150 Hz. Within this frequency range, neuromasts encode the duration, local direction, amplitude, frequency, and phase of a hydrodynamic stimulus. This paper reviews the peripheral and central processing of lateral line information in fishes. Special attention is given to the coding of simple and complex hydrodynamic stimuli, to parallel processing, the roles of the various brain areas that process hydrodynamic information and the centrifugal (efferent) control of lateral line information. The review argues that in order to fully comprehend peripheral and central lateral line information processing, it is imperative to do comparative studies that take into account the ecology of fishes, meaning that natural stimulus and noise conditions have to be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ALLN:

Anterior lateral line nerve

CN:

Canal neuromast

MON :

Medial octavolateralis nucleus

PLLN :

Posterior lateral line nerve

SN:

Superficial neuromast

RF:

Receptive field

References

  • Alexandre D, Ghysen A (1999) Somatotopy of the lateral line projection in larval zebrafish. Proc Natl Acad Sci USA 96:7558–7562

    Article  PubMed  CAS  Google Scholar 

  • Alnaes E (1973) Unit activity of ganglionic and medullary second order neurones in the eel lateral line system. Acta Physiol Scand 88:160–174

    Article  PubMed  CAS  Google Scholar 

  • Altman JS, Dawes EA (1981) Mapping of lateral line and auditory input to the brain of Xenopus laevis. J Physiol 317:78–79

    Google Scholar 

  • Baker CF, Montgomery JC (1999a) Lateral line mediated rheotaxis in the Antarctic fish Pagnothenia borchgrevinki. Polar Biol 21:305–309

    Article  Google Scholar 

  • Baker CF, Montgomery JC (1999b) The sensory basis of rheotaxis in the blind Mexican cave fish, Astyanax fasciatus. J Comp Physiol A 184:519–527

    Article  Google Scholar 

  • Bartels M, Münz H, Claas B (1990) Representation of lateral line and electrosensory systems in the midbrain of the axolotl, Ambystoma mexicanum. J Comp Physiol A 167:347–356

    Article  Google Scholar 

  • Behrend O, Branoner F, Zhivko Z, Ziehm U (2006) Neural responses to water surface waves in the midbrain of the aquatic predator Xenopus laevis. Eur J Neurosc 23:729–744

    Article  Google Scholar 

  • Bell C, Bodznick D, Montgomery J, Bastian J (1997) The generation and subtraction of sensory expectations within cerebellum-like structures. Brain Behav Evol 50(Suppl. 1):17–31

    Article  PubMed  Google Scholar 

  • Bleckmann H (1985) Discrimination between prey and non-prey wave signals in the fishing spider Dolomedes triton (Pisauridae). In: Kalmring K, Elsner N (eds) Acoustic and vibrational communication in insects. Paul Parey, Berlin, pp 215–222

    Google Scholar 

  • Bleckmann H (1988a) Prey identification and prey localization in surface-feeding fish and fishing spiders. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory biology of aquatic animals. Springer, New York, pp 619–641

    Google Scholar 

  • Bleckmann H (1988b) The water surface as trophic niche: prey identification and prey localization with aid of capillary surface waves. In: Elsner N, Barth FG (eds) Sense organs. Interfaces between environment and behavior. Thieme, Stuttgart, pp 89–96

    Google Scholar 

  • Bleckmann H (1994) Reception of hydrodynamic stimuli in aquatic and semiaquatic animals. In: Rathmayer W (ed) Progress in zoology, vol 41. Gustav Fischer, Stuttgart, pp 1–115

    Google Scholar 

  • Bleckmann H (2004) 3-D-orientation with the octavolateralis system. J Physiol Paris 98:53–63

    Article  PubMed  Google Scholar 

  • Bleckmann H (2006) The lateral line system of fish. In: Hara T, Zielinski B (eds) Fish physiology. Sensory systems neuroscience. Elsevier, Amsterdam, pp 411–453

    Google Scholar 

  • Bleckmann H, Bullock TH (1989) Central nervous physiology of the lateral line system, with special reference to cartilaginous fishes. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line. Neurobiology and evolution. Springer, New York, pp 387–408

    Google Scholar 

  • Bleckmann H, Münz H (1990) Physiology of lateral-line mechanoreceptors in a teleost with highly branched, multiple lateral lines. Brain Behav Evol 35:240–250

    PubMed  CAS  Google Scholar 

  • Bleckmann H, Topp G (1981) Surface wave sensitivity of the lateral line organs of the topminnow Aplocheilus lineatus. Naturwissenschaften 68:624–625

    Article  Google Scholar 

  • Bleckmann H, Zelick R (1993) The responses of peripheral and central mechanosensory lateral line units of weakly electric fish to moving objects. J Comp Physiol A 172:115–128

    Article  Google Scholar 

  • Bleckmann H, Waldner I, Schwartz E (1981) Frequency discrimination of the surface-feeding fish Aplocheilus lineatus—a prerequisite for prey localization? J Comp Physiol A 143:485–490

    Article  Google Scholar 

  • Bleckmann H, Bullock TH, Jorgensen JM (1987) The lateral line mechanoreceptive mesencephalic, diencephalic, and telencephalic regions in the thornback ray, Platyrhinoidis triseriata (Elasmobranchii). J Comp Physiol A 161:67–84

    Article  PubMed  CAS  Google Scholar 

  • Bleckmann H, Tittel G, Blübaum-Gronau E (1989a) The lateral line system of surface-feeding fish: Anatomy, physiology, and Behavior. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line. Neurobiology and evolution. Springer, New York, pp 501–526

    Google Scholar 

  • Bleckmann H, Weiss O, Bullock TH (1989b) Physiology of lateral line mechanoreceptive regions in the elasmobranch brain. J Comp Physiol A 164:459–474

    Article  PubMed  CAS  Google Scholar 

  • Bleckmann H, Niemann U, Fritzsch B (1991a) Peripheral and central aspects of the acoustic and lateral line system of a bottom dwelling catfish, Ancistrus spec. J Comp Neurol 314:452–466

    Article  PubMed  CAS  Google Scholar 

  • Blickhan R, Krick C, Breithaupt T, Zehren D, Nachtigall W (1992) Generation of a vortex-chain in the wake of a subundulatory swimmer. Naturwissenschaften 79:220–221

    Article  Google Scholar 

  • Boord RL, Montgomery JC (1989) Central mechanosensory lateral line centers and pathways among the elasmobranchs. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line. Neurobiology and evolution. Springer, New York, pp 323–340

    Google Scholar 

  • Bullock TH (1989) Lateral line research: prospects and opportunities. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line. Neurobiology and evolution. Springer, Heidelberg, pp 681–685

    Google Scholar 

  • Bullock TH, Horridge GA (1965) Structure and function in the nervous system of invertebrates. Vol. I and II. Freeman and Company

  • Burt de Perera T (2004) Spatial parameters encoded in the spatial map of the blind Mexican cave fish, Astyanax fasciatus. Anim Behav 68:291–295

    Article  Google Scholar 

  • Caird DM (1978) A simple cerebellar system: the lateral line lobe of the goldfish. J Comp Physiol A 127:61–74

    Article  Google Scholar 

  • Callens M, Vandenbussche E, Greenway PH (1967) Convergence of retinal and lateral line stimulation on tectum opticum and cerebellar neurons. Arch Int Physiol Biochem 75:148–150

    CAS  Google Scholar 

  • Chagnaud B, Bleckmann H, Hofmann M (2007a) Kármán vortex street detection by the lateral line. J Comp Physiol A 193: 753–763

    Article  Google Scholar 

  • Chagnaud B, Bleckmann H, Hofmann MH (2007b) Lateral line nerve fibers do not respond to bulk water flow direction. Zoology (in press)

  • Chagnaud B, Hofmann MH, Mogdans J (2007c) Responses to dipole stimuli of anterior lateral line nerve fibres in goldfish, Carassius auratus, under still and running water conditions. J Comp Physiol A 193:249–263

    Article  Google Scholar 

  • Claas B (1980) Die Projektionsgebiete des Rumpfseitenliniensystems von Sarotherodon niloticus L. (Cichlidae, Teleostei): Neuroanatomische und neurophysiologische Untersuchungen. Dissertation, Universität Bielefeld, pp 1–136

  • Claas B, Münz H (1981) Projection of lateral line afferents in a teleost brain. Neurosc Letters 23:287–290

    Article  CAS  Google Scholar 

  • Claas B, Fritzsch B, Münz H (1981) Common efferents to lateral line and labyrinthine hair cells in aquatic vertebrates. Neurosci Lett 27:231–235

    Article  PubMed  CAS  Google Scholar 

  • Claas B, Münz H, Zittlau KE (1989) Direction coding in central parts of the lateral line system. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line. Neurobiology and evolution. Springer, New York, pp 409–419

    Google Scholar 

  • Coombs S, Conley RA (1997a) Dipole source localization by mottled sculpin II. The role of lateral line excitation patterns. J Comp Physiol A 180:401–416

    Article  PubMed  CAS  Google Scholar 

  • Coombs S, Conley RA (1997b) Dipole source localization by mottled sculpin. I. Approach strategies. J Comp Physiol A 180:387–400

    Article  PubMed  CAS  Google Scholar 

  • Coombs S, Montgomery J (1992) Fibers innervating different parts of the lateral line system of an Antarctic Notothenioid, Trematomus bernachii, have similar frequency responses despite large variation in the peripheral morphology. Brain Behav Evol 40:217–233

    Article  PubMed  CAS  Google Scholar 

  • Coombs S, Janssen J, Webb JF (1988) Diversity of lateral line systems: evolutionary and functional considerations. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory biology of aquatic animals, Springer, New York, pp 553–593

    Google Scholar 

  • Coombs S, Hastings M, Finneran J (1996) Modeling and measuring lateral line excitation patterns to changing dipole source locations. J Comp Physiol A 178:359–371

    Article  PubMed  CAS  Google Scholar 

  • Coombs S, Mogdans J, Halstead M, Montgomery J (1998) Transformation of peripheral inputs by the first-order lateral line brainstem nucleus. J Comp Physiol A 182:609–626

    Article  Google Scholar 

  • Coombs S, Braun CB, Donovan B (2001) The orienting response of Lake Michigan mottled sculpin is mediated by canal neuromasts. J Exp Biol 204:337–348

    PubMed  CAS  Google Scholar 

  • Curcic-Blake B, van Netten SM (2006) Source localization encoding in the fish lateral line. J Exp Biol 209:1548–1559

    Article  PubMed  Google Scholar 

  • Dehnhardt G, Mauck B, Hanke W, Bleckmann H (2001) Hydrodynamic trail-following in Harbor Seals (Phoca vitulina). Science 293:102–104

    Article  PubMed  CAS  Google Scholar 

  • DeRosa F, Fine ML (1988) Primary connections of the anterior and posterior lateral line nerves in the oyster toadfish. Brain Behav Evol 31:312–317

    CAS  Google Scholar 

  • Drucker EG, Lauder GV (1999) Locomotor forces on a swimming fish: Three-dimensional vortex wake dynamics quantified using digital particle image velocimetry. J Exp Biol 202:2393–2412

    PubMed  Google Scholar 

  • Echteler SM (1985) Organization of central auditory pathways in a teleost fish, Cyprinus carpio. J Comp Physiol A 156:267–280

    Article  Google Scholar 

  • Engelmann J, Bleckmann H (2004) Coding of lateral line stimuli in the goldfish midbrain in still- and running water. Zoology 107:135–151

    Article  PubMed  Google Scholar 

  • Engelmann J, Hanke W, Mogdans J, Bleckmann H (2000) Hydrodynamic stimuli and the fish lateral line. Nature 408:51–52

    Article  PubMed  CAS  Google Scholar 

  • Engelmann J, Hanke W, Bleckmann H (2002a) Lateral line reception in still- and running water. J Comp Physiol A 188:513–526

    Article  CAS  Google Scholar 

  • Engelmann J, Kröther S, Mogdans J, Bleckmann H (2002b) Responses of primary and secondary lateral line units to dipole stimuli applied under still and running water conditions. Bioacoustics 12:158–160

    Google Scholar 

  • Fiebig E (1988) Connections of the corpus cerebelli in the thornback guitarfish, Platyrhinoidis triseriata (Elasmobranchii): a study with WGA-HRP and extracellular granule cell recording. J Comp Neurol 268:567–583

    Article  PubMed  CAS  Google Scholar 

  • Finger TE, Bullock TH (1982) Thalamic center for the lateral line system in the catfish Ictalurus nebulosus: evoked potential evidence. J Neurobiol 13:39–47

    Article  PubMed  CAS  Google Scholar 

  • Finger TE, Tong S-L (1984) Central organization of eighth nerve and mechanosensory lateral line systems in the brainstem of Ictalurid catfish. J Comp Neurol 229:129–151

    Article  PubMed  CAS  Google Scholar 

  • Flock A, Wersäll J (1962) A study of the orientation of sensory hairs of the receptor cells in the lateral line organ of a fish with special reference to the function of the receptors. J Cell Biol 15:19–27

    Article  PubMed  CAS  Google Scholar 

  • Franosch J-MP, Sichert A, Suttner M, van Hemmen JL (2005) Estimating position and velocity of a submerged moving object by the clawed frog Xenopus and by fish—a cybernetic approach. Biol Cybern 93:231–238

    Article  PubMed  Google Scholar 

  • Fritzsch B (1989) Diversity and regression in the amphibian lateral line and electrosensory system. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line. Neurobiology and evolution. Springer, New York, pp 99–114

    Google Scholar 

  • Frühbeis B (1984) Verhaltensphysiologische Untersuchungen zur Frequenzunterscheidung und Empfindlichkeit durch das Seitenlinienorgan des blinden Höhlenfisches Anoptichthys jordani. Dissertation, University of Mainz, pp 1–73

  • Görner P, Kalmijn AJ (1989) Frequency response of lateral line neuromasts in the thornback ray (Platyrhinoidis triseriata). In: Erber J, Menzel R, Pflüger H-J, Todt D (eds) Proceedings of the 2nd international congress of neuroetholgy, 1st edn. Thieme, Stuttgart

  • Hanke W (2001) Hydrodynamische Spuren schwimmender Fische und ihre mögliche Bedeutung für das Jagdverhalten fischfressender Tiere. PhD thesis, University of Bonn, Bonn, pp 1–72

  • Hanke W, Bleckmann H (2004) The hydrodynamic trails of Lepomis gibbosus (Centrarchidae), Colomesus psittacus (Tetraodontidae) and Thysochromis ansorgii (Cichlidae) investigated with scanning particle image velocimetry. J Exp Biol 207:1585–1596

    Article  PubMed  Google Scholar 

  • Hanke W, Brücker C, Bleckmann H (2000) The ageing of the low frequency water disturbances caused by swimming goldfish and its possible relevance to prey detection. J Exp Biol 203:1193–1200

    PubMed  CAS  Google Scholar 

  • Heiligenberg W, Bastian J (1984) The electric sense of weakly electric fish. Annu Rev Psychol 46:561–583

    CAS  Google Scholar 

  • Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction and functional architecture of the cat’s visual cortex. J Physiol 160:106–154

    PubMed  CAS  Google Scholar 

  • Ivry RB, Baldo JV (1992) Is the cerebellum involved in learning and cognition? Curr Opin Neurobiol 2:212–216

    Article  PubMed  CAS  Google Scholar 

  • Janssen J (2004) Lateral line sensory ecology. In: von der Emde G, Mogdans J, Kapoor BG (eds) The senses of fish. Adaptations for the reception of natural stimuli. Narosa Publishing House, New Delhi, pp 231–264

    Google Scholar 

  • Jayne MG, Atema J (2007) Sharks need the lateral line to locate odor sources: rheotaxis and eddy chemotaxis. J Exp Biol 210:1925–1934

    Article  Google Scholar 

  • Kalmijn AJ (1988) Hydrodynamic and acoustic field detection. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory biology of aquatic animals, Springer, New York, pp 83–130

    Google Scholar 

  • Kalmijn AJ (1989) Functional evolution of lateral line and inner ear sensory systems. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line. Neurobiology and evolution. Springer, New York, pp 187–216

    Google Scholar 

  • Kandel ER, Schwartz JH, Jessell TM (2000) Principles of neural science, 3 edn. McGraw-Hill, New York

    Google Scholar 

  • Kanter MJ, Coombs S (2003) Rheotaxis and prey detection in uniform currents by Lake Michigan mottled sculpin (Cottus bairdii). J Exp Biol 206:59–70

    Article  PubMed  Google Scholar 

  • Kirsch JA, Hofmann MH, Mogdans J, Bleckmann H (2002) Response properties of diencephalic neurons to visual, acoustic and hydrodynamic stimulation in the goldfish, Carassius auratus. Zoology 105: 61–70

    Article  PubMed  Google Scholar 

  • Knudsen EI (1977) Distinct auditory and lateral line nuclei in the midbrain of catfishes. J Comp Neurol 173:417–432

    Article  PubMed  CAS  Google Scholar 

  • Konishi M (1983) Neuroethology of acoustic prey localization in the barn owl. In: Huber F, Markl H (eds) Neuroethology and behavioral physiology. Springer, Heidelberg, pp 304–317

    Google Scholar 

  • Kotchabhakdi N (1976) Functional organization of the goldfish cerebellum. Information processing of input from peripheral sense organs. J Comp Physiol A 112:75–93

    Article  Google Scholar 

  • Kröther S, Mogdans J, Bleckmann H (2002) Brainstem lateral line responses to sinusoidal wave stimuli in still- and running water. J Exp Biol 205:1471–1484

    PubMed  Google Scholar 

  • Kröther S, Bleckmann H, Mogdans J (2004) Effects of running water on brainstem lateral line responses in trout, Oncorhynchus mykiss, to sinusoidal wave stimuli. J Comp Physiol A 190:437–448

    Article  Google Scholar 

  • Lee LT, Bullock TH (1984) Sensory representation in the cerebellum of the catfish. J Comp Physiol A 13:157–169

    CAS  Google Scholar 

  • Liao JC (2006) The role of the lateral line and vision on body kinematics and hydrodynamic preference of rainbow trout in turbulent flow. J Exp Biol 209:4077–4090

    Article  PubMed  Google Scholar 

  • Lowe DA (1986) Organisation of lateral line and auditory areas in the midbrain of Xenopus laevis. J Comp Neurol 245:498–513

    Article  PubMed  CAS  Google Scholar 

  • Maturana HR, Lettvin JY, McCulloch WS, Pitts WH (1960) Anatomy and physiology of vision in the frog (Rana pipiens). J Gen Physiol 43:129–175

    Article  PubMed  Google Scholar 

  • McCormick CA (1989) Central lateral line mechanosensory pathways in bony fish. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line. Neurobiology and Evolution. Springer, New York, pp 341–364

    Google Scholar 

  • McCormick CA, Hernandez DV (1996) Connections of the octaval and lateral line nuclei of the medulla in the goldfish, including the cytoarchitecture of the secondary octaval population in goldfish and catfish. Brain Behav Evol 47:113–138

    Article  PubMed  CAS  Google Scholar 

  • Mogdans J, Bleckmann H (1998) Responses of the goldfish trunk lateral line to moving objects. J Comp Physiol A 182:659–676

    Article  Google Scholar 

  • Mogdans J, Goenechea L (1999) Responses of medullary lateral line units in the goldfish, Carassius auratus, to sinusoidal and complex wave stimuli. Zoology 102:227–237

    Google Scholar 

  • Mogdans J, Kröther S (2001) Brainstem lateral line responses to sinusoidal wave stimuli in the goldfish, Carassius auratus. Zoology 104:153–166

    Article  PubMed  CAS  Google Scholar 

  • Mogdans J, Bleckmann H, Menger N (1997) Sensitivity of central units in the goldfish, Carassius auratus, to transient hydrodynamic stimuli. Brain Behav Evol 50:261–283

    Article  PubMed  CAS  Google Scholar 

  • Montgomery JC, Bodznick D (1994) An adaptive filter that cancels self-induced noise in the electrosensory and lateral line mechanosensory systems of fish. Neurosci Lett 174:145–148

    Article  PubMed  CAS  Google Scholar 

  • Montgomery JC, Macdonald JA, Housley GD (1988) Lateral line function in an antarctic fish related to the signals produced by planktonic prey. J Comp Physiol A 163:827–833

    Article  Google Scholar 

  • Montgomery JC, Coombs S, Janssen J (1994) Form and function relationships in the lateral line systems: comparative data from six species of antarctic notothenioid fish. Brain Behav Evol 44:299–306

    Article  PubMed  CAS  Google Scholar 

  • Montgomery JC, Coombs S, Conley RA, Bodznick D (1995) Hindbrain sensory processing in lateral line, electrosensory, and auditory systems: a comparative overview of anatomical and functional similarities. Aud Neurosci 1:207–231

    Google Scholar 

  • Montgomery JC, Baker CF, Carton AG (1997) The lateral line can mediate rheotaxis in fish. Nature 389:960–963

    Article  CAS  Google Scholar 

  • Montgomery JC, Coombs S (1998) Peripheral encoding of moving sources by the lateral line system of a sit-and-wait predator. J Exp Biol 201:91–102

    Google Scholar 

  • Montgomery J, Garton G, Voigt R, Baker C, Diebel C (2000) Sensory processing of water currents by fishes. Phil Trans R Soc Lond B 355:1325–1327

    Article  CAS  Google Scholar 

  • Montgomery JC, Macdonald F, Baker CF, Carton AG (2002) Hydrodynamic contributions to multimodal guidance of prey capture behavior in fish. Brain Behav Evol 59:190–198

    Article  PubMed  Google Scholar 

  • Müller HM (1993) Neuronale Verarbeitung von Seitenlinieninformationen im Mittelhirn eines Welses. Dissertation, University of Bielefeld, pp 1–100

  • Müller HM, Bleckmann H (1993) The responses of central octavolateralis cells to moving sources. J Comp Physiol A 179:455–471

    Google Scholar 

  • Münz H (1985) Single unit activity in the peripheral lateral line system of the cichlid fish Sarotherodon niloticus L. J Comp Physiol A 157:555–568

    Article  Google Scholar 

  • Münz H (1989) Functional organization of the lateral line periphery. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line. Neurobiology and evolution. Springer, New York, pp 285–298

    Google Scholar 

  • New JG (2002) Multimodal integration in the feeding behaviors of predatory teleost fishes. Brain Behav Evol 59:177–189

    Article  PubMed  Google Scholar 

  • New JG, Bodznick D (1985) Segregation of electroreceptive and mechanoreceptive lateral line afferents in the hindbrain of chondrostean fishes. Brain Res 336:89–98

    Article  PubMed  CAS  Google Scholar 

  • New JG, Coombs S, McCormick CA, Oshel PE (1996) Cytoarchitecture of the medial octavolateralis nucleus in the goldfish, Carassius auratus. J Comp Neurol 366:534–546

    Article  PubMed  CAS  Google Scholar 

  • New J, Braun CB, Walter K (2000) Central projections of nerve fibers innervating individual canal neuromast organs in the muskellunge, Esox masquinongy. Soc Neurosci 26:146

    Google Scholar 

  • Northcutt GR (1988) Sensory and other neural traits and the adaptationist program: Mackarels of San Marco? In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory biology of aquatic animals. Springer, Heidelberg, pp 869–879

    Google Scholar 

  • O’Bennar JD (1976) Electrophysiology of neural units in the goldfish optic tectum. Brain Res Bull 1:529–541

    Article  Google Scholar 

  • Palmer LM, Giuffrida BA, Mensinger AF (2003) Neural recordings from the lateral line in free-swimming toadfish, Opsanus tau. Biol Bull 205:216–218

    Article  PubMed  CAS  Google Scholar 

  • Plachta D, Mogdans J, Bleckmann H (1999) Responses of midbrain lateral line units of the goldfish, Carassius auratus, to constant-amplitude and amplitude modulated water wave stimuli. J Comp Physiol A 185:405–417

    Article  Google Scholar 

  • Plachta D, Hanke W, Bleckmann H (2003) A hydrodynamic topographic map and two hydrodynamic subsystems in a vertebrate brain. J Exp Biol 206:3479–3486

    Article  PubMed  Google Scholar 

  • Pohlmann K, Atema J, Breithaupt T (2004) The importance of the lateral line in nocturnal predation of piscivorous catfish. J Exp Biol 207:2971–2978

    Article  PubMed  Google Scholar 

  • Portavella M, Torres B, Salas C (2004) Avoidance response in goldfish: emotional and temporal involvement of medial and lateral telencephalic pallium. J Neurosci 24:2335–2342

    Article  PubMed  CAS  Google Scholar 

  • Prechtl JC, von der Emde G, Wolfart J, Karamürsel S, Akoev GN, Andrianov YN, Bullock TH (1998) Sensory processing in the pallium of a mormyrid fish. J Neurosci 18:7381–7393

    PubMed  CAS  Google Scholar 

  • Puzdrowski RL (1989) Peripheral distribution and central projections of the lateral-line nerves in goldfish, Carassius auratus. Brain Behav Evol 34:110–131

    PubMed  CAS  Google Scholar 

  • Puzdrowski RL, Leonard RB (1993) The octavolateral systems in the stingray, Dasyatis sabina. I. Primary projections of the octaval and lateral line nerves. J Comp Neurol 332:21–37

    Article  PubMed  CAS  Google Scholar 

  • Roberts BL, Meredith GE (1989) The efferent system. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line. Neurobiology and evolution. Springer, New York, pp 445–459

    Google Scholar 

  • Roberts BL, Russell IJ (1972) The activity of lateral-line efferent neurones in stationary and swimming dogfish. J Exp Biol 57:435–448

    PubMed  CAS  Google Scholar 

  • Rosen MW (1959) Waterflow about a swimming fish. Tech Publ U.S. Naval Test Station, China Lake, Calif.; NOTS TP 2298, pp 1–94

  • Salas C, Rodríguez F, Vargas JP, Durán E, Torres B (1996) Spatial learning and memory deficits after telencephalic ablation in goldfish trained in place and turn maze procedures. Behav Neurosci 110:965–980

    Article  PubMed  CAS  Google Scholar 

  • Sand O (1981) The lateral line and sound perception. In: Tavolga WN, Popper AN, Fay RR (eds) Hearing and sound communication in fishes. Springer, New York, pp 459–446

    Google Scholar 

  • Schellart NAM, Kroese ABA (1989) Interrelationship of acousticolateral and visual systems in the teleost midbrain. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line. Neurobiology and evolution. Springer, New York, pp 421–443

    Google Scholar 

  • Schellart NAM, Prins M, Kroese ABA (1992) The pattern of trunk lateral line afferents and efferents in the rainbow trout (Salmo gairdneri). Brain Behav Evol 39:371–380

    Article  PubMed  CAS  Google Scholar 

  • Song J, Northcutt RG (1991) The primary projections of the lateral-line nerves of the Florida gar, Lepisosteus platyrhincus. Brain Behav Evol 37:38–63

    Article  PubMed  CAS  Google Scholar 

  • Striedter GF (1991) Auditory, electrosensory, and mechanosensory lateral line pathways through the diencephalon and telencephalon of channel catfish. J Comp Neurol 312:311–331

    Article  PubMed  CAS  Google Scholar 

  • Tomchik SM, Lu Z (2005) Octavolateral projections and organization in the medulla of a teleost fish, the sleeper goby (Dormitator latifrons). J Comp Neurol 481:96–117

    Article  PubMed  Google Scholar 

  • Tomchik SM, Lu Z (2006) Auditory physiology and anatomy of octavolateral efferent neurons in a teleost fish. J Comp Physiol A 192:51–68

    Article  Google Scholar 

  • Tricas TC, Highstein SM (1990) Visually mediated inhibition of lateral line primary afferent activity by the octavolateralis efferent system during predation in the free-swimming toadfish, Opsanus tau. Exp Brain Res 83:233–236

    Article  PubMed  CAS  Google Scholar 

  • Tricas TC, Highstein SM (1991) Action of the octavolateralis efferent system upon the lateral line of free-swimming toadfish, Opsanus tau. J Comp Physiol A 169:25–37

    Article  PubMed  CAS  Google Scholar 

  • Vogel D, Bleckmann H (1997) Surface wave discrimination in the topminnow Aplocheilus lineatus. J Comp Physiol A 180:671–681

    Article  Google Scholar 

  • Vogel D, Bleckmann H (2000) Behavioral discrimination of water motions caused by moving objects. J Comp Physiol A 186:1107–1117

    Article  PubMed  Google Scholar 

  • Voigt R, Carton AG, Montgomery JC (2000) Responses of anterior lateral line afferent neurones to water flow. J Exp Biol 203:2495–2502

    PubMed  CAS  Google Scholar 

  • von der Emde G, Bleckmann H (1998) Finding food: Senses involved in foraging for insect larvae in the electric fish Gnathonemus petersii. J Exp Biol 201:969–980

    PubMed  Google Scholar 

  • von der Emde G, Schwarz S, Gomez L, Budelli R, Grant K (1998) Electric fish measure distance in the dark. Nature 395:890–894

    Article  PubMed  CAS  Google Scholar 

  • Wagner T, Schwartz E (1992) Efferent lateral-line neurons of teleosts and their projection to lateral-line segments. In: Elsner N, Richter WD (eds) Rhythmogenesis in neurons and networks. Proceedings of the 20th Göttingen neurobiology conference. Georg Thieme Verlag, Stuttgart, pp 251

  • Waterman TH, Wiersma CAG (1963) Electrical responses in decapod crustaceans visual systems. J Cell Comp Physiol 61:1–16

    Article  PubMed  CAS  Google Scholar 

  • Webb JF (1989) Developmental constraints and evolution of the lateral line system in teleost fishes. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line. Neurobiology and evolution. Springer, New York, pp 79–98

    Google Scholar 

  • Weeg MS, Bass A (2002) Frequency response properties of lateral line superficial neuromasts in a vocal fish, with evidence for acoustic sensitivity. J Neurophysiol 88:1252–1262

    PubMed  Google Scholar 

  • Weeg MS, Bass AH (2000) Central lateral line pathways in a vocalizing fish. J Comp Neurol 418:41–64

    Article  PubMed  CAS  Google Scholar 

  • Wehner R (1987) Matched filters—neural models of the external world. J Comp Physiol A 161:511–531

    Article  Google Scholar 

  • Weissert R, von Campenhausen C (1981) Discrimination between stationary objects by the blind cave fish Anoptichthys jordani. J Comp Physiol A 143:375–382

    Article  Google Scholar 

  • Wojtenek W, Mogdans J, Bleckmann H (1998) The responses of midbrain lateral line units of the goldfish Carassius auratus to moving objects. Zoology 101:69–82

    Google Scholar 

  • Wubbels RJ, Kroese ABA, Schellart NAM (1993) Response properties of lateral line and auditory units in the medulla oblongata of the rainbow trout (Oncorhynchus mykiss). J Exp Biol 179:77–92

    Google Scholar 

  • Wullimann MF (1998) The central nervous system. In: Evans DH (eds) The physiology of fishes, 2nd edn. CRC, New York, pp 245–282

    Google Scholar 

  • Wullimann MF, Hofmann MH, Meyer DL (1991) The valvula cerebelli of the spiny eel, Macrognathus aculeatus, receives primary lateral-line afferents from the rostrum of the upper jaw. Cell Tissue Res 266:285–293

    Article  Google Scholar 

  • Zittlau KE, Claas B, Münz H (1986) Directional sensitivity of lateral line units in the clawed toad Xenopus laevis Daudin. J Comp Physiol A 158:469–477

    Article  Google Scholar 

Download references

Acknowledgments

The author is grateful for the wonderful time he was allowed to spend in the laboratory of Ted Bullock. I thank J. Mogdans and R. Zelick for their helpful comments on an earlier draft of this chapter. The original research of the author was generously supported by the DFG, the BMBF, DARPA, the BfG, DAAD, and the EU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Bleckmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bleckmann, H. Peripheral and central processing of lateral line information. J Comp Physiol A 194, 145–158 (2008). https://doi.org/10.1007/s00359-007-0282-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-007-0282-2

Keywords

Navigation