Skip to main content
Log in

Coding of abstract quantity by ‘number neurons’ of the primate brain

  • Review
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Humans share with nonhuman animals a quantification system for representing the number of items as nonverbal mental magnitudes. Over the past decade, the anatomical substrates and neuronal mechanisms of this quantification system have been unraveled down to the level of single neurons. Work with behaviorally trained nonhuman primates identified a parieto-frontal cortical network with individual neurons selectively tuned to the number of items. Such ‘number neurons’ can track items across space, time, and modality to encode numerosity in a most abstract, supramodal way. The physiological properties of these neurons can explain fundamental psychophysical phenomena during numerosity judgments. Functionally overlapping groups of parietal neurons represent not only numerable-discrete quantity (numerosity), but also innumerable-continuous quantity (extent) and relations between quantities (proportions), supporting the idea of a generalized magnitude system in the brain. These studies establish putative homologies between the monkey and human brain and demonstrate the suitability of nonhuman primates as model system to explore the neurobiological roots of the brain’s nonverbal quantification system, which may constitute the evolutionary foundation of all further, more elaborate numerical skills in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

aITC:

Anterior inferior temporal cortex

BOLD:

Blood-oxygenation-level-dependent

BS:

Broad spiking neuron

fMRI:

Functional magnetic resonance imaging

IPS:

Intraparietal sulcus

JND:

Just noticable difference

LIP:

Lateral intraparietal area

NS:

Narrow spiking neuron

PFC:

Prefrontal cortex

PPC:

Posterior parietal cortex

SPL:

Superior parietal lobule

VIP:

Ventral intraparietal area

References

  • Agrillo C, Dadda M, Bisazza A (2007) Quantity discrimination in female mosquitofish. Anim Cogn 10:63–70

    Article  PubMed  Google Scholar 

  • Ansari D, Garcia N, Lucas E, Hamon K, Dhital B (2005) Neural correlates of symbolic number processing in children and adults. NeuroReport 16:1769–1773

    Article  PubMed  Google Scholar 

  • Barlow H (1995) The neuron doctrine in perception. In: Gazzaniga, Michael S (eds) The cognitive neurosciences. MIT Press, Cambridge, pp 415–435

    Google Scholar 

  • Benson-Amram S, Heinen VK, Dryer SL, Holekamp KE (2011) Numerical assessment and individual call discrimination by wild spotted hyaenas, Crocuta crocuta. Anim Behav 82:743–752

    Article  Google Scholar 

  • Beran MJ (2007) Rhesus monkeys (Macaca mulatta) enumerate large and small sequentially presented sets of items using analog numerical representations. J Exp Psychol Anim Behav Process 33:42–54

    Article  PubMed  Google Scholar 

  • Bogale BA, Kamata N, Mioko K, Sugita S (2011) Quantity discrimination in jungle crows, Corvus macrorhynchos. Anim Behav 82:635–641

    Article  Google Scholar 

  • Bongard S, Nieder A (2010) Basic mathematical rules are encoded by primate prefrontal cortex neurons. Proc Natl Acad Sci USA 107:2277–2282

    Article  PubMed  CAS  Google Scholar 

  • Boysen ST, Berntson GG (1989) Numerical competence in a chimpanzee (Pan troglodytes). J Comp Psychol 103:23–31

    Article  PubMed  CAS  Google Scholar 

  • Brannon EM, Terrace HS (1998) Ordering of the numerosities 1 to 9 by monkeys. Science 282:746–749

    Article  PubMed  CAS  Google Scholar 

  • Bremmer F, Schlack A, Shah NJ, Zafiris O, Kubischik M, Hoffmann K, Zilles K, Fink GR (2001) Polymodal motion processing in posterior parietal and premotor cortex: a human fMRI study strongly implies equivalencies between humans and monkeys. Neuron 29:287–296

    Article  PubMed  CAS  Google Scholar 

  • Cantlon JF, Brannon EM (2005) Semantic congruity affects numerical judgments similarly in monkeys and humans. Proc Natl Acad Sci USA 102:16507–16511

    Article  PubMed  CAS  Google Scholar 

  • Cantlon JF, Brannon EM (2006) Shared system for ordering small and large numbers in monkeys and humans. Psychol Sci 17:401–406

    Article  PubMed  Google Scholar 

  • Cantlon JF, Libertus ME, Pinel P, Dehaene S, Brannon EM, Pelphrey KA (2009) The neural development of an abstract concept of number. J Cogn Neurosci 21:2217–2229

    Article  PubMed  Google Scholar 

  • Castelli F, Glaser DE, Butterworth B (2006) Discrete and analogue quantity processing in the parietal lobe: a functional MRI study. Proc Natl Acad Sci USA 103:4693–4698

    Article  PubMed  CAS  Google Scholar 

  • Chafee MV, Goldman-Rakic PS (2000) Inactivation of parietal and prefrontal cortex reveals interdependence of neural activity during memory-guided saccades. J Neurophysiol 83:1550–1566

    PubMed  CAS  Google Scholar 

  • Colby CL, Goldberg ME (1999) Space and attention in parietal cortex. Annu Rev Neurosci 22:319–349

    Article  PubMed  CAS  Google Scholar 

  • Colby CL, Duhamel JR, Goldberg ME (1993) Ventral intraparietal area of the macaque—anatomical location and visual response properties. J Neurophysiol 69:902–914

    PubMed  CAS  Google Scholar 

  • Connors BW, Gutnick MJ (1990) Intrinsic firing patterns of diverse neocortical neurons. Trends Neurosci 13:99–104

    Article  PubMed  CAS  Google Scholar 

  • Cordes S, Gelman R, Gallistel CR, Whalen J (2001) Variability signatures distinguish verbal from nonverbal counting for both large and small numbers. Psychonom Bull Rev 8:698–707

    Article  CAS  Google Scholar 

  • Dacke M, Srinivasan MV (2008) Evidence for counting in insects. Anim Cogn 11:683–689

    Article  PubMed  Google Scholar 

  • Davis H, Pérusse R (1988) Numerical competence in animals: definitional issues, current evidence, and a new research agenda. Behav Brain Sci 11:561–615

    Article  Google Scholar 

  • Dehaene S (1992) Varieties of numerical abilities. Cognition 44:1–42

    Article  PubMed  CAS  Google Scholar 

  • Dehaene S (2005) Evolution of human cortical circuits for reading and arithmetic: the “neuronal recycling” hypothesis. In: Dehaene S, Duhamel JR, Hauser MD, Rizzolatti G (eds) From monkey brain to human brain. MIT Press, Cambridge, pp 133–157

    Google Scholar 

  • Dehaene S (2011) The number sense: how the mind creates mathematics. Oxford University Press, Oxford

    Google Scholar 

  • Dehaene S, Changeux JP (1993) Development of elementary numerical abilities: a neural model. J Cogn Neurosci 5:390–407

    Article  Google Scholar 

  • Dehaene S, Cohen L (2007) Cultural recycling of cortical maps. Neuron 56:384–398

    Article  PubMed  CAS  Google Scholar 

  • Dehaene S, Spelke E, Pinel P, Stanescu R, Tsivkin S (1999) Sources of mathematical thinking: behavioral and brain-imaging evidence. Science 284:970–974

    Article  PubMed  CAS  Google Scholar 

  • Dehaene S, Molko N, Cohen L, Wilson AJ (2004) Arithmetic and the brain. Curr Opin Neurobiol 14:218–224

    Article  PubMed  CAS  Google Scholar 

  • Desimone R (1996) Neural mechanisms for visual memory and their role in attention. Proc Natl Acad Sci USA 93:13494–13499

    Article  PubMed  CAS  Google Scholar 

  • Diester I, Nieder A (2007) Semantic associations between signs and numerical categories in the prefrontal cortex. PLoS Biol 5:e294

    Article  PubMed  CAS  Google Scholar 

  • Diester I, Nieder A (2008) Complementary contributions of prefrontal neuron classes in abstract numerical categorization. J Neurosci 28:7737–7747

    Article  PubMed  CAS  Google Scholar 

  • Diester I, Nieder A (2010) Numerical values leave a semantic imprint on associated signs in monkeys. J Cogn Neurosci 22:174–183

    Article  PubMed  Google Scholar 

  • Doricchi F, Guariglia P, Gasparini M, Tomaiuolo F (2005) Dissociation between physical and mental number line bisection in right hemisphere brain damage. Nat Neurosci 8:1663–1665

    Article  PubMed  CAS  Google Scholar 

  • Dormal V, Dormal G, Joassin F, Pesenti M (2012) A common right fronto-parietal network for numerosity and duration processing: an fMRI study. Hum Brain Mapp 33:1490–1501

    Article  PubMed  Google Scholar 

  • Eger E, Sterzer P, Russ MO, Giraud AL, Kleinschmidt A (2003) A supramodal number representation in human intraparietal cortex. Neuron 37:719–725

    Article  PubMed  CAS  Google Scholar 

  • Emery NJ, Clayton NS (2004) The mentality of crows: convergent evolution of intelligence in corvids and apes. Science 306:1903–1907

    Article  PubMed  CAS  Google Scholar 

  • Evans TA, Beran MJ, Harris EH, Rice DF (2009) Quantity judgments of sequentially presented food items by capuchin monkeys (Cebus apella). Anim Cogn 12:97–105

    Article  PubMed  Google Scholar 

  • Evarts EV (1966) Methods for recording activity of individual neurons in moving animals. In: Rushmer RF (ed) Methods in medical research. Year Book, Chicago, pp 241–250

    Google Scholar 

  • Fias W, Lammertyn J, Reynvoet B, Dupont P, Orban GA (2003) Parietal representation of symbolic and nonsymbolic magnitude. J Cogn Neurosci 15:47–56

    Article  PubMed  Google Scholar 

  • Freedman DJ, Riesenhuber M, Poggio T, Miller EK (2001) Categorical representation of visual stimuli in the primate prefrontal cortex. Science 291:312–316

    Article  PubMed  CAS  Google Scholar 

  • Fuster JM (2001) The prefrontal cortex—an update: time is of the essence. Neuron 30:319–333

    Article  PubMed  CAS  Google Scholar 

  • Fuster J (2008) The prefrontal cortex, 4th edn. Academic Press, London

    Google Scholar 

  • Fuster JM, Bodner M, Kroger JK (2000) Cross-modal and cross-temporal association in neurons of frontal cortex. Nature 405:347–351

    Article  PubMed  CAS  Google Scholar 

  • Genovesio A, Tsujimoto S, Wise SP (2006) Neuronal activity related to elapsed time in prefrontal cortex. J Neurophysiol 95:3281–3285

    Article  PubMed  Google Scholar 

  • Genovesio A, Tsujimoto S, Wise SP (2011) Prefrontal cortex activity during the discrimination of relative distance. J Neurosci 31:3968–3980

    Article  PubMed  CAS  Google Scholar 

  • Gerstmann J (1940) Syndrome of finger agnosia, disorientation for right and left agraphia and acalculia. Arch Neurol Psychiatry 44:398–408

    Article  Google Scholar 

  • Gordon P (2004) Numerical cognition without words: evidence from Amazonia. Science 306:496–499

    Article  PubMed  CAS  Google Scholar 

  • Gould SJVE (1982) Exaptation: a missing term in the science of form. Paleobiology 8:4–15

    Google Scholar 

  • Henik A, Tzelgov J (1982) Is three greater than five: the relation between physical and semantic size in comparison tasks. Mem Cogn 10:389–395

    Article  CAS  Google Scholar 

  • Henschen SE (1919) Über Sprach-, Musik und Rechenmechanismen und ihre Lokalisation im Großhirn. Z. ges. Neurologie und Psychiatrie 52:273–298

    Google Scholar 

  • Hoffmann A, Ruettler V, Nieder A (2011) Ontogeny of object permanence and object tracking in the carrion crow, Corvus corone. Anim Behav 82:359–367

    Article  Google Scholar 

  • Ifrah G (2000) The universal history of numbers: from prehistory to the invention of the computer. Wiley, New York

    Google Scholar 

  • Jacob SN, Nieder A (2008) The ABC of cardinal and ordinal number representations. Trends Cogn Sci 12:41–43

    Article  PubMed  Google Scholar 

  • Jacob SN, Nieder A (2009a) Notation-independent representation of fractions in the human parietal cortex. J Neurosci 29:4652–4657

    Article  PubMed  CAS  Google Scholar 

  • Jacob SN, Nieder A (2009b) Tuning to non-symbolic proportions in the human frontoparietal cortex. Eur J Neurosci 30:1432–1442

    Article  PubMed  Google Scholar 

  • Jacob SN, Vallentin D, Nieder A (2012) Relating magnitudes: the brain’s code for proportions. Trends Cogn Sci 16:157–166

    Article  PubMed  Google Scholar 

  • Jasper HH, Ricci G, Doane B (1960) Microelectrode analysis of cortical cell discharge during avoidance conditioning in the monkey. Int J Electroencephalogr Clin Neurophysiol Suppl 131:137–156

    Google Scholar 

  • Kaufmann L, Koppelstaetter F, Siedentopf C, Haala I, Haberlandt E et al (2006) Neural correlates of the number-size interference task in children. NeuroReport 17:587–591

    Article  PubMed  Google Scholar 

  • Koehler O (1941) Vom Erlernen unbenannter Anzahlen bei Vögeln. Naturwissenschaften 29:201–218

    Article  Google Scholar 

  • Koehler O (1951) The ability of birds to “count”. Bull Anim Behav 9:41–45

    Google Scholar 

  • Kohonen T (1997) Self-organizing maps, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  • Laubach M (2004) Wavelet-based processing of neuronal spike trains prior to discriminant analysis. J Neurosci Meth 134:159–168

    Article  Google Scholar 

  • Leon MI, Shadlen MN (2003) Representation of time by neurons in the posterior parietal cortex of the macaque. Neuron 38:317–327

    Article  PubMed  CAS  Google Scholar 

  • Lewis JW, Van Essen DC (2000) Corticocortical connections of visual, sensorimotor, and multimodal processing areas in the parietal lobe of the macaque monkey. J Comp Neurol 428:112–137

    Article  PubMed  CAS  Google Scholar 

  • Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412:150–157

    Article  PubMed  CAS  Google Scholar 

  • Luria AR (1966) Higher cortical functions in man. Tavistock, London

    Google Scholar 

  • Lyon BE (2003) Egg recognition and counting reduce costs of avian conspecific brood parasitism. Nature 422:495–499

    Article  PubMed  CAS  Google Scholar 

  • Markram H, Toledo-Rodriguez M, Wang Y, Gupta A, Silberberg G, Wu C (2004) Interneurons of the neocortical inhibitory system. Nat Rev Neurosci 5:793–807

    Article  PubMed  CAS  Google Scholar 

  • Matsuzawa T (1985) Use of numbers by a chimpanzee. Nature 315:57–59

    Article  PubMed  CAS  Google Scholar 

  • McComb K, Packer C, Pusey A (1994) Roaring and numerical assessment in contests between groups of female lions, Panthera leo. Anim Behav 47:379–387

    Article  Google Scholar 

  • Meck WH, Church RM (1983) A mode control model of counting and timing processes. J Exp Psychol: Anim Behav Process 9:320–334

    Article  CAS  Google Scholar 

  • Merten K, Nieder A (2009) Compressed scaling of abstract numerosity representations in adult humans and monkeys. J Cogn Neurosci 21:333–346

    Article  PubMed  Google Scholar 

  • Merten K, Nieder A (2012) Active encoding of decisions about stimulus absence in primate prefrontal cortex neurons. Proc Natl Acad Sci USA 109:6289–6294

    Article  PubMed  CAS  Google Scholar 

  • Miller EK, Cohen JD (2001) An integrative theory of prefrontal cortex function. Annu Rev Neurosci 24:167–202

    Article  PubMed  CAS  Google Scholar 

  • Miller EK, Erickson CA, Desimone R (1996) Neural mechanisms of visual working memory in prefrontal cortex of the macaque. J Neurosci 16:5154–5167

    PubMed  CAS  Google Scholar 

  • Mita A, Mushiake H, Shima K, Matsuzaka Y, Tanji J (2009) Interval time coding by neurons in the presupplementary and supplementary motor areas. Nat Neurosci 12:502–507

    Article  PubMed  CAS  Google Scholar 

  • Nieder A (2005) Counting on neurons: the neurobiology of numerical competence. Nat Rev Neurosci 6:177–190

    Google Scholar 

  • Nieder A (2009) Prefrontal cortex and the evolution of symbolic reference. Curr Opin Neurobiol 19:99–108

    Article  PubMed  CAS  Google Scholar 

  • Nieder A (2012) Supramodal numerosity selectivity of neurons in primate prefrontal and posterior parietal cortices. Proc Natl Acad Sci USA 109:11860–11865

    Article  PubMed  CAS  Google Scholar 

  • Nieder A, Dehaene S (2009) Representation of number in the brain. Annu Rev Neurosci 32:185–208

    Article  PubMed  CAS  Google Scholar 

  • Nieder A, Merten K (2007) A labeled-line code for small and large numerosities in the monkey prefrontal cortex. J Neurosci 27:5986–5993

    Article  PubMed  CAS  Google Scholar 

  • Nieder A, Miller EK (2003) Coding of cognitive magnitude: compressed scaling of numerical information in the primate prefrontal cortex. Neuron 37:149–157

    Article  PubMed  CAS  Google Scholar 

  • Nieder A, Miller EK (2004a) A parieto-frontal network for visual numerical information in the monkey. Proc Natl Acad Sci USA 101:7457–7462

    Article  PubMed  CAS  Google Scholar 

  • Nieder A, Miller EK (2004b) Analog numerical representations in rhesus monkeys: evidence for parallel processing. J Cogn Neurosci 16:889–901

    Article  PubMed  Google Scholar 

  • Nieder A, Freedman DJ, Miller EK (2002) Representation of the quantity of visual items in the primate prefrontal cortex. Science 297:1708–1711

    Article  PubMed  CAS  Google Scholar 

  • Nieder A, Diester I, Tudusciuc O (2006) Temporal and spatial enumeration processes in the primate parietal cortex. Science 313:1431–1435

    Article  PubMed  CAS  Google Scholar 

  • Onoe H, Komori M, Onoe K, Takechi H, Tsukada H, Watanabe Y (2001) Cortical networks recruited for time perception: a monkey positron emission tomography (PET) study. Neuroimage 13:37–45

    Article  PubMed  CAS  Google Scholar 

  • Piazza M, Dehaene S (2004) From number neurons to mental arithmetic: the cognitive neuroscience of number sense. In: Gazzaniga M (ed) The cognitive neurosciences, 3rd edn. MIT Press, Cambridge

    Google Scholar 

  • Piazza M, Izard V, Pinel P, Le Bihan D, Dehaene S (2004) Tuning curves for approximate numerosity in the human intraparietal sulcus. Neuron 44:547–555

    Article  PubMed  CAS  Google Scholar 

  • Pica P, Lemer C, Izard V, Dehaene S (2004) Exact and approximate arithmetic in an Amazonian indigene group. Science 306:499–503

    Article  PubMed  CAS  Google Scholar 

  • Pinel P, Piazza M, Le Bihan D, Dehaene S (2004) Distributed and overlapping cerebral representations of number, size, and luminance during comparative judgments. Neuron 41:983–993

    Article  PubMed  CAS  Google Scholar 

  • Quintana J, Fuster JM, Yajeya J (1989) Effects of cooling parietal cortex on prefrontal units in delay tasks. Brain Res 503:100–110

    Article  PubMed  CAS  Google Scholar 

  • Rainer G, Rao SC, Miller EK (1999) Prospective coding for objects in primate prefrontal cortex. J Neurosci 19:5493–5505

    PubMed  CAS  Google Scholar 

  • Rivera SM, Reiss AL, Eckert MA, Menon V (2005) Developmental changes in mental arithmetic: evidence for increased functional specialization in the left inferior parietal cortex. Cereb Cortex 15:1779–1790

    Article  PubMed  CAS  Google Scholar 

  • Roitman JD, Brannon EM, Platt ML (2007) Monotonic coding of numerosity in macaque lateral intraparietal area. PLoS Biol 8:e208

    Article  CAS  Google Scholar 

  • Sawamura H, Shima K, Tanji J (2002) Numerical representation for action in the parietal cortex of the monkey. Nature 415:918–922

    Article  PubMed  CAS  Google Scholar 

  • Sawamura H, Shima K, Tanji J (2010) Deficits in action selection based on numerical information after inactivation of the posterior parietal cortex in monkeys. J Neurophysiol 104:902–910

    Article  PubMed  Google Scholar 

  • Scarf D, Hayne H, Colombo M (2011) Pigeons on par with primates in numerical competence. Science 334:1664

    Article  PubMed  CAS  Google Scholar 

  • Smirnova AA, Lazareva OF, Zorina ZA (2000) Use of number by crows: investigation by matching and oddity learning. J Exp Anal Behav 73:163–176

    Article  PubMed  CAS  Google Scholar 

  • Stoet G, Snyder LH (2004) Single neurons in posterior parietal cortex of monkeys encode cognitive set. Neuron 42:1003–1012

    Article  PubMed  CAS  Google Scholar 

  • Stoet G, Snyder LH (2009) Neural correlates of executive control functions in the monkey. Trends Cogn Sci 13:228–234

    Article  PubMed  Google Scholar 

  • Stoianov I, Zorzi M (2012) Emergence of a ‘visual number sense’ in hierarchical generative models. Nat Neurosci 15:194–196

    Article  PubMed  CAS  Google Scholar 

  • Tanaka K (1996) Inferotemporal cortex and object vision. Annu Rev Neurosci 19:109–139

    Article  PubMed  CAS  Google Scholar 

  • Tomita H, Ohbayashi M, Nakahara K, Hasegawa I, Miyashita Y (1999) Top-down signal from prefrontal cortex in executive control of memory retrieval. Nature 401:699–703

    Article  PubMed  CAS  Google Scholar 

  • Tudusciuc O, Nieder A (2007) Neuronal population coding of continuous and discrete quantity in the primate posterior parietal cortex. Proc Natl Acad Sci USA 104:14513–14518

    Article  PubMed  CAS  Google Scholar 

  • Tudusciuc O, Nieder A (2009) Contributions of primate prefrontal and posterior parietal cortices to length and numerosity representation. J Neurophysiol 101:2984–2994

    Article  PubMed  Google Scholar 

  • Tudusciuc O, Nieder A (2010) Comparison of length judgments and the Müller-Lyer illusion in monkeys and humans. Exp Brain Res 207:221–231

    Article  PubMed  Google Scholar 

  • Uller C, Jaeger R, Guidry G, Martin C (2003) Salamanders (Plethodon cinereus) go for more: rudiments of number in an amphibian. Anim Cogn 6:105–112

    PubMed  Google Scholar 

  • Vallentin D, Nieder A (2008) Behavioural and prefrontal representation of spatial proportions in the monkey. Curr Biol 18:1420–1425

    Article  PubMed  CAS  Google Scholar 

  • Vallentin D, Nieder A (2010) Representations of visual proportions in the primate posterior parietal and prefrontal cortices. Eur J Neurosci 32:1380–1387

    Article  PubMed  Google Scholar 

  • Vallentin D, Bongard S, Nieder A (2012) Numerical rule coding in the prefrontal, premotor, and posterior parietal cortices of macaques. J Neurosci 32:6621–6630

    Article  PubMed  CAS  Google Scholar 

  • Verguts T, Fias W (2004) Representation of number in animals and humans: a neural model. J Cogn Neurosci 16:1493–1504

    Article  PubMed  Google Scholar 

  • Wallis JD, Anderson KC, Miller EK (2001) Single neurons in prefrontal cortex encode abstract rules. Nature 411:953–956

    Article  PubMed  CAS  Google Scholar 

  • Walsh V (2003) A theory of magnitude: common cortical metrics of time, space and quantity. Trends Cogn Sci 7:483–488

    Article  PubMed  Google Scholar 

  • Washburn DA (1994) Stroop-like effects for monkeys and humans: processing speed or strength of association? Psychol Sci 5:375–379

    Article  PubMed  CAS  Google Scholar 

  • Washburn DA, Rumbaugh DM (1991) Ordinal judgments of numerical symbols by macaques (Macaca mulatta). Psychol Sci 2:190–193

    Article  PubMed  CAS  Google Scholar 

  • Whalen J, Gallistel CR, Gelman R (1999) Nonverbal counting in humans: the psychophysics of number representation. Psychol Sci 10:130–137

    Article  Google Scholar 

  • Wilson ML, Kahlenberg SM, Wells M, Wrangham RW (2012) Ecological and social factors affect the occurrence and outcomes of intergroup encounters in chimpanzees. Anim Behav 83:277–291

    Article  Google Scholar 

  • Wonders CP, Anderson SA (2006) The origin and specification of cortical interneurons. Nat Rev Neurosci 7:687–696

    Article  PubMed  CAS  Google Scholar 

  • Xia L, Emmerton J, Siemann M, Delius JD (2001) Pigeons (Columba livia) learn to link numerosities with symbols. J Comp Psychol 115:83–91

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Nieder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nieder, A. Coding of abstract quantity by ‘number neurons’ of the primate brain. J Comp Physiol A 199, 1–16 (2013). https://doi.org/10.1007/s00359-012-0763-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-012-0763-9

Keywords

Navigation