Skip to main content

Advertisement

Log in

Differences in expression of junctional adhesion molecule-A and β-catenin in multiple sclerosis brain tissue: increasing evidence for the role of tight junction pathology

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Previously we have employed antibodies to the tight junction (TJ)-associated proteins ZO-1 and occludin to describe endothelial tight junction abnormalities, in lesional and normal appearing white matter, in primary and secondary progressive multiple sclerosis (MS). This work is extended here by use of antibodies to the independent TJ-specific proteins and junctional adhesion molecule A & B (JAM-A, JAM-B). We have also assessed the expression in MS of β-catenin, a protein specific to the TJ-associated adherens junction. Immunocytochemistry and semiquantitative confocal microscopy for JAM-A and β-catenin was performed on snap-frozen sections from MS cases (n = 11) and controls (n = 6). Data on 1,443 blood vessels was acquired from active lesions (n = 13), inactive lesions (n = 13), NAWM (n = 20) and control white matter (n = 13). In MS abnormal JAM-A expression was found in active (46%) and inactive lesions (21%), comparable to previous data using ZO-1. However, a lower level of TJ abnormality was found in MS NAWM using JAM-A (3%) compared to ZO-1 (13%). JAM-B was strongly expressed on a small number of large blood vessels in control and MS tissues but at too low a level for quantitative analysis. By comparison with the high levels of abnormality observed with the TJ proteins, the adherens junction protein β-catenin was normally expressed in all MS and control tissue categories. These results confirm, by use of the independent marker JAM-A, that TJ abnormalities are most frequent in active white matter lesions. Altered expression of JAM-A, in addition to affecting junctional tightness may also both reflect and affect leukocyte trafficking, with implications for immune status within the diseased CNS. Conversely, the adherens junction component of the TJ, as indicated by β-catenin expression is normally expressed in all MS and control tissue categories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Abbott NJ (2000) Inflammatory mediators and modulation of blood–brain barrier permeability. Cell Mol Neurobiol 20:131–147

    Article  CAS  PubMed  Google Scholar 

  2. Aurrand-Lions M, Duncan L, Ballestrem C, Imhof BA (2001) JAM-2, a novel immunoglobulin superfamily molecule, expressed by endothelial and lymphatic cells. J Biol Chem 276:2733–2741

    Article  CAS  PubMed  Google Scholar 

  3. Ballabh P, Furong HU, Kumarasiri M, Braun A, Nedergaard M (2005) Development of tight junction molecules in blood vessels of germinal matrix, cerebral cortex and white matter. Pediatr Res 58:791–798

    Article  CAS  PubMed  Google Scholar 

  4. Barton ES, Forrest JC, Connolly JL, Chappell JD, Liu Y, Schnell FJ, Nusrat A, Parkos CA, Dermody TS (2001) Junction adhesion molecule is a receptor for reovirus. Cell 104:441–451

    Article  CAS  PubMed  Google Scholar 

  5. Bazzoni G (2000) Interaction of junctional adhesion molecule with the tight junction components ZO-1, cingulin, and occludin. J Biol Chem 275:20520–20526

    Article  CAS  PubMed  Google Scholar 

  6. Bo L, Peterson JW, Mork S, Hoffman PA, Gallatin WM, Ransohoff RM, Trapp BD (1996) Distribution of immunoglobulin superfamily members ICAM-1, -2, -3, and the beta 2 integrin LFA-1 in multiple sclerosis lesions. J Neuropathol Exp Neurol 55:1060–1072

    CAS  PubMed  Google Scholar 

  7. Bolton SJ, Anthony DC, Perry VH (1998) Loss of the tight junction proteins occludin and zonula occludens-1 from the cerebral vascular endothelium during neutrophill-induced blood–brain barrier breakdown in vivo. Neuroscience 86:1245–1257

    Article  CAS  PubMed  Google Scholar 

  8. Braga VM, Del Maschio A, Machesky L, Dejana E (1999) Regulation of cadherin function by Rho and Rac: modulation by junction maturation and cellular context. Mol Biol Cell 10:9–22

    CAS  PubMed  Google Scholar 

  9. Carman CV, Springer TA (2004) A transmigratory cup in leukocyte diapedesis both through individual vascular endothelial cells and between them. J Cell Biol 167:377–388

    Article  CAS  PubMed  Google Scholar 

  10. Dore-Duffy P, Washington R, Dragovic L (1993) Expression of endothelial cell activation antigens in microvessels from patients with multiple sclerosis. Adv Exp Med Biol 331:243–248

    CAS  PubMed  Google Scholar 

  11. Ebnet K, Suzuki A, Ohno S, Vestweber D (2004) Junctional adhesion molecules (JAMs): more molecules with dual functions. J Cell Sci 117:19–29

    Article  CAS  PubMed  Google Scholar 

  12. Estes ML, Rudick RA, Barnett GH, Ransohoff RM (1990) Stereotactic biopsy of an active multiple sclerosis lesion. Immunocytochemical analysis and neuropathologic correlation with magnetic resonance imaging. Arch Neurol 47:1299–1303

    CAS  PubMed  Google Scholar 

  13. Filippi M, Tortorella C, Bozzali M (1999) Normal-appearing white matter changes in multiple sclerosis: the contribution of magnetic resonance techniques. Mult Scler 5:273–282

    CAS  PubMed  Google Scholar 

  14. Furuse M, Sasaki H, Fujimoto K, Tsukita S (1998). A single gene product, claudin-1 or -2 reconstitutes tight junction strands and recruits occluding in fibroblasts. J Cell Biol 143:391–401

    Article  CAS  PubMed  Google Scholar 

  15. Girard J-P, Springer TA (1995) High endothelial venules: specialized endothelium for lymphocyte migration ismmunol. Today 16:449–457

    CAS  Google Scholar 

  16. Greenberg DA, Jin K (2005) From angiogenesis to neuropathology. Nature 438:954–959

    Article  CAS  PubMed  Google Scholar 

  17. Hawkins CP, Mackenzie F, Tofts P, du Boulay EP McDonald WI (1991) Patterns of blood–brain barrier breakdown in inflammatory demyelination. Brain 114:801–810

    Article  PubMed  Google Scholar 

  18. Hogg N, Laschinger M, Giles K, McDowall A (2003) T-cell integrins: more than just sticking points. J Cell Sci 116:4695–4705

    Article  CAS  PubMed  Google Scholar 

  19. Ilyas M, Tomlinson IP (1997) The interaction of APC, E-cadherin and beta-catenin in tumour development and progression. J Pathol 182:128–137

    Article  CAS  PubMed  Google Scholar 

  20. Ilyas M, Tomlinson IP, Rowan A, Pignatelli M, Bodmer WF (1997) Beta-catenin mutations in cell lines established from human colorectal cancers. Proc Natl Acad Sci USA 94:10330–10334

    Article  CAS  PubMed  Google Scholar 

  21. Itoh M, Sasaki H, Furuse M, Ozaki H, Kita T, Tsukita S (2001) Junctional adhesion molecule (JAM) binds to PAR-3: a possible mechanism for the recruitment of PAR-3 to tight junctions. J Cell Biol 154:491–497

    Article  CAS  PubMed  Google Scholar 

  22. Johnson-Leger CA, Aurrand-Lions M, Beltraminelli N, Fasel N, Imhof BA (2002) Junctional adhesion molecule-2 (JAM-2) promotes lymphocyte transendothelial migration. Blood 100:2479–2486

    Article  CAS  PubMed  Google Scholar 

  23. Kermode AG, Thompson AJ, Tofts P, MacManus DG, Kendall BE, Kingsley DP, Moseley IF, Rudge P, McDonald WI (1990) Breakdown of the blood–brain barrier precedes symptoms and other MRI signs of new lesions in multiple sclerosis. Pathogenetic and clinical implications. Brain 113:1477–1489

    Article  PubMed  Google Scholar 

  24. Kirk J, Zhou A-L (1996) Viral infection at the blood–brain barrier in multiple sclerosis: an ultrastructural study of tissues from a U.K. regional brain bank. Mult Scler Clin Lab Res 1:242–252

    CAS  Google Scholar 

  25. Kirk J, Plumb J, Mirakhur M, McQuaid S (2003) Tight junctional abnormality in multiple sclerosis white matter affects all calibres of vessel and is associated with blood–brain barrier leakage and active demyelination. J Pathol 201:319–327

    Article  PubMed  Google Scholar 

  26. Kirk S, Frank JA, Karlik S (2004) Angiogenesis in multiple sclerosis: is it good, bad or an epiphenomenon?. J Neurol Sci 217:125–130

    Article  CAS  PubMed  Google Scholar 

  27. Lai M, Hodgson T, Gawne-Cain M, Webb S, MacManus D, McDonald WI, Thompson AJ, Miller DH (1996) A preliminary study into the sensitivity of disease activity detection by serial weekly magnetic resonance imaging in multiple sclerosis. Neurol Neurosurg Psychiatry 60:339–341

    Article  CAS  Google Scholar 

  28. Lassmann H, Wekerle H (2005) The pathology of multiple sclerosis, chapter 12. In: Compston A et al (eds) McAlpine’s multiple sclerosis, 4th edn. Churchill Livingstone, London, pp 557–600

    Google Scholar 

  29. Leech S, Kirk J, Plumb J, McQuaid S (2006) Persistent endothelial abnormalities and blood–brain barrier leak in primary and secondary progressive multiple sclerosis. Neuropathol Appl Neurobiol (in press)

  30. Liang TW, DeMarco RA, Mrsny RJ, Gurney A, Gray A, Hooley J, Aaron HL, Huang A, Klassen T, Tumas DB, Fong S (2000) Characterization of huJAM: evidence for involvement in cell–cell contact and tight junction regulation. Am J Physiol Cell Physiol 279:C1733–C1743

    CAS  PubMed  Google Scholar 

  31. Liang TW, Chiu HH, Gurney A, Sidle A, Tumas DB, Schow P, Foster J, Klassen T, Dennis K, DeMarco RA, Pham T, Frantz G, Fong S (2002) Vascular endothelial-junctional adhesion molecule (VE-JAM)/JAM 2 interacts with T, NK and dendritic cells through JAM-3. J Immunol 168:1618–1626

    CAS  PubMed  Google Scholar 

  32. Liu Y, Nusrat A, Schnell FJ, Reaves TA, Walsh S, Pochet M, Parkos CA (2000) Human junction adhesion molecule regulates the junction resealing in epithelia. J Cell Sci 113:2363–2374

    CAS  PubMed  Google Scholar 

  33. MacIntyre A, Hammond CJ, Little CS, Appelt DM, Balin BJ (2002) Chlamydia pneumoniae infection alters the junctional complex of human brain microvascular endothelial cells. FEMS Microbiol Lett 217:167–172

    Article  CAS  PubMed  Google Scholar 

  34. Makino A, Shimojima M, Miyazawa T, Kato K, Tohya Y, Akashi H (2006) Junctional adhesion molecule 1 is a receptor for feline calicivirus. J Virol 80: 4482–4490

    Article  CAS  PubMed  Google Scholar 

  35. Mandell KJ, Holley GP, Parkos CA, Edelhauser HF (2006) Antibody blockade of junctional adhesion molecule-A in rabbit corneal endothelial tight junctions produces corneal swelling. Invest Ophthalmol Vis Sci 47:2408–2416

    Article  PubMed  Google Scholar 

  36. Martin-Padura I, Lostaglio S, Schneemann M, Williams L, Romano M, Fruscella P, Panzeri C, Stoppacciaro A, Ruco L, Villa A, Simmons D, Dejana E (1998) Junctional adhesion molecule, a novel member of the immunoglobulin superfamily that distributes at intercellular junctions and modulates monocyte transmigration. J Cell Biol 142:117–127

    Article  CAS  PubMed  Google Scholar 

  37. Matthews PM, Arnold DL (2001) Magnetic resonance imaging of multiple sclerosis: new insights linking pathology to clinical evolution. Curr Opin Neurol 14:279–287

    Article  CAS  PubMed  Google Scholar 

  38. McRae BL, Kennedy MK, Tan LJ, Del Canto MC, Picha KS, Miller SD (1992) Induction of active and adoptive relapsing experimental autoimmune encephalomyelitis (EAE) using an encephalitogenic epitope of proteolipid protein. J Neuroimmunl 38:229–240

    Article  CAS  Google Scholar 

  39. Michie SA, Streeter PR, Bolt PA, Butcher EC, Picker LJ (1993) The human peripheral lymph node vascular addressin. An inducible endothelial antigen involved in lymphocyte homing. Am J Pathol 143:1688–1698

    CAS  PubMed  Google Scholar 

  40. Minagar A, AlexanderJS (2003) Blood–brain barrier disruption in multiple sclerosis. Mult Scler 9:540–549

    Article  CAS  PubMed  Google Scholar 

  41. Morrissey SP, Deichmann R, Syha J, Simonis C, Zettl U, Archelos JJ, Jung S, Stodal H, Lassmann H, Toyka KV, Haase A, Hartung HP (1996) Partial inhibition of AT-EAE by an antibody to ICAM-1: clinico-histological and MRI studies. J Neuroimmunol 69:85–93

    Article  CAS  PubMed  Google Scholar 

  42. Naik MU, Mousa SA, Parkos CA, Naik UP (2003) Signaling through JAM-1 and alphavbeta3 is required for the angiogenic action of bFGF: dissociation of the JAM-1 and alphavbeta3 complex. Blood 102:2108–2114

    Article  CAS  PubMed  Google Scholar 

  43. Ostermann G, Weber KS, Zernecke A, Schroder A, Weber C (2002) JAM-1 is a ligand of the beta (2) integrin LFA-1 involved in transendothelial migration of leukocytes. Nat Immunol 3:116–118

    Article  CAS  Google Scholar 

  44. Palmeri D, van Zante A, Huang CC, Hemmerich S, Rosen SD (2000) Vascular endothelial junction-associated molecule, a novel member of the immunoglobulin superfamily, is localized to intercellular boundaries of endothelial cells. J Biol Chem 275:19139–19145

    Article  CAS  PubMed  Google Scholar 

  45. Palmeri D, Feng-Rong Z, Rosen SD, Hemmerich S (2004) Differential gene expression profile of human tonsil high endothelial cells: implications for lymphocyte trafficking. J Leukoc Biol 75:910–927

    Article  CAS  PubMed  Google Scholar 

  46. Petty MA, Lo EH (2002) Junctional complexes of the blood–brain barrier: permeability changes in neuroinflammation. Prog Neurobiol 68:311–323

    Article  CAS  PubMed  Google Scholar 

  47. Plumb J, McQuaid S, Mirakhur M, Kirk J (2002) Abnormal endothelial tight junctions in active lesions and normal-appearing white matter in multiple sclerosis. Brain Pathol 12:154–169

    Article  PubMed  Google Scholar 

  48. Plumb J, Armstrong MA, Mirakhur M, McQuaid S (2003) CD83-positive dendritic cells are present in occasional perivascular cuffs in multiple sclerosis lesions. Mult Scler 9:142–147

    Article  CAS  PubMed  Google Scholar 

  49. Proescholdt MA, Jacobson S, Tresser N, Oldfield EH, Merrill MJ (2003) Vascular endothelial growth factor is expressed in multiple sclerosis plaques and can induce inflammatory lesions in experimental allergic encephalomyelitis. J Neuropathol Exp Neurol 61:914–925

    Google Scholar 

  50. Reese TS, Karnovsky MJ (1967) Fine structural localization of a blood–brain barrier to exogenous peroxidase. J Cell Biol 34:207–217

    Article  CAS  PubMed  Google Scholar 

  51. Rosen SD (1999) Endothelial ligands for l-selectin: from lymphocyte recirculation to allograft rejection. Am J Pathol 155:1013–1020

    CAS  PubMed  Google Scholar 

  52. Schule C, Firth JA (1993) Immunohistochemical localiation of adherens junctions components in blood–brain barrier microvessel of the rat. J Cell Sci 104:773–782

    Google Scholar 

  53. Seidensticker MJ, Behrens J (2000) Biochemical interactions in the Wnt pathway. Biochim Biophys Acta 1495:168–182

    Article  CAS  PubMed  Google Scholar 

  54. Serafini B, Rosicarelli B, Magliozzi R, Stiglano E, Capello E, Mancardi GL, Aloisi F (2006) Dendritic cells in multiple sclerosis lesions: maturation stage, myelin uptake and interaction with proliferating T cells. Neuropathol Exp Neurol 65:124–141

    Article  CAS  Google Scholar 

  55. Sharief MK, Noori MA, Ciardi M, Cirelli A, Thompson EJ (1993) Increased levels of circulating ICAM-1 in serum and cerebrospinal fluid of patients with active multiple sclerosis. Correlation with TNF-α and blood brain barrier damage. J Neuroimmunol 43:15–22

    Article  CAS  PubMed  Google Scholar 

  56. Sobocka MB, Sobocki T, Babinski A, Hartwig JH, Li M, Ehrlich YH, Kornecki E (2004) Signaling pathways of the F11 receptor (F11R: a.k.a. JAM-1, JAM-A) in human platelets: F11R dimerization, phosphorylation and complex formation with the integrin GPIIIa. J Recept Signal Transduct Res 24:85–105

    Article  CAS  PubMed  Google Scholar 

  57. Tajouri L, Mellick AS, Ashton KJ, Tannenberg AE, Nagra RM, Tourtellotte WW, Griffiths LR (2003) Quantitative and qualitative changes in gene expression patterns characterize the activity of plaques in multiple sclerosis. Brain Res Mol Brain Res 119:170–183

    Article  CAS  PubMed  Google Scholar 

  58. Werring DJ, Clark CA, Droogan AG, Barker GJ, Miller DH, Thompson AJ (2001) Water diffusion is elevated in widespread regions of normal-appearing white matter in multiple sclerosis and correlates with diffusion in focal lesions. Mult Scler 7:83–89

    CAS  PubMed  Google Scholar 

  59. Williams LA, Martin-Padura I, Dejana E, Hogg N, Simmons DL (1999). Identification and characterisation of human junctional adhesion molecule (JAM). Mol Immunol 36:1175–1188

    Article  CAS  PubMed  Google Scholar 

  60. Wolburg H, Wolburg-Buchholz K, Engelhardt B (2005) Diapedesis of mononuclear cells across cerebral venules during experimental autoimmune encephalomyelitis leaves tight junctions intact. Acta Neuropathol (Berl) 109:181–190

    Article  Google Scholar 

  61. Woodroofe MN, Cuzner ML (1993) Cytokine mRNA expression in inflammatory multiple sclerosis lesions: detection by non-radioactive in situ hybridization. Cytokine 5:583–588

    Article  CAS  PubMed  Google Scholar 

  62. Xu H, Dawson R, Crane IJ, Liversidge J (2005) Leukocyte diapedesis in vivo induces transient loss of tight junction protein at the blood–retina barrier. Invest Ophthalmol Vis Sci 46:2487–2494

    Article  PubMed  Google Scholar 

  63. Yap AS, Brieher WM, Gumbiner BM (1997) Molecular and functional analysis of cadherin-based adherens junctions. Annu Rev Cell Dev Biol 13:119–146

    Article  CAS  PubMed  Google Scholar 

  64. Zhurinsky J, Shtutman M, Ben-Ze’ev A (2000) Plakoglobin and beta-catenin: protein interactions, regulation and biological roles. J Cell Sci 113:3127–3139

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Suzie Leech was the recipient of a 1-year post-doctoral fellowship from MS Ireland. The Leica SP2 confocal microscope was purchased with a Wellcome Trust Equipment grant (069411/Z/02/Z). Tissue samples were supplied by the UK Multiple Sclerosis Tissue Bank, funded by the Multiple Sclerosis Society of Great Britain and Northern Ireland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen McQuaid.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Padden, M., Leech, S., Craig, B. et al. Differences in expression of junctional adhesion molecule-A and β-catenin in multiple sclerosis brain tissue: increasing evidence for the role of tight junction pathology. Acta Neuropathol 113, 177–186 (2007). https://doi.org/10.1007/s00401-006-0145-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-006-0145-x

Keywords

Navigation