Skip to main content

Advertisement

Log in

Levels of kinesin light chain and dynein intermediate chain are reduced in the frontal cortex in Alzheimer’s disease: implications for axoplasmic transport

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Fast anterograde and retrograde axoplasmic transports in neurons rely on the activity of molecular motors and are critical for maintenance of neuronal and synaptic functions. Disturbances of axoplasmic transport have been identified in Alzheimer’s disease and in animal models of this disease, but their mechanisms are not well understood. In this study we have investigated the distribution and the level of expression of kinesin light chains (KLCs) (responsible for binding of cargos during anterograde transport) and of dynein intermediate chain (DIC) (a component of the dynein complex during retrograde transport) in frontal cortex and cerebellar cortex of control subjects and Alzheimer’s disease patients. By immunoblotting, we found a significant decrease in the levels of expression of KLC1 and 2 and DIC in the frontal cortex, but not in the cerebellar cortex, of Alzheimer’s disease patients. A significant decrease in the levels of synaptophysin and of tubulin-β3 proteins, two neuronal markers, was also observed. KLC1 and DIC immunoreactivities did not co-localize with neurofibrillary tangles. The mean mRNA levels of KLC1, 2 and DIC were not significantly different between controls and AD patients. In SH-SY5Y neural cells, GSK-3β phosphorylated KLC1, a change associated to decreased association of KLC1 with its cargoes. Increased levels of active GSK-3β and of phosphorylated KLC1 were also observed in AD frontal cortex. We suggest that reduction of KLCs and DIC proteins in AD cortex results from both reduced expression and neuronal loss, and that these reductions and GSK-3β-mediated phosphorylation of KLC1 contribute to disturbances of axoplasmic flows and synaptic integrity in Alzheimer’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Adalbert R, Nogradi A, Babetto E et al (2009) Severely dystrophic axons at amyloid plaques remain continuous and connected to viable cell bodies. Brain 132:402–416

    Article  PubMed  Google Scholar 

  2. Andersson ME, Sjolander A, Andreasen N et al (2007) Kinesin gene variability may affect tau phosphorylation in early Alzheimer’s disease. Int J Mol Med 20:233–239

    PubMed  CAS  Google Scholar 

  3. Bain J, Plater L, Elliott M et al (2007) The selectivity of protein kinase inhibitors: a further update. Biochem J 408:297–315

    Article  PubMed  CAS  Google Scholar 

  4. Barrett KL, Willingham JM, Garvin AJ, Willingham MC (2001) Advances in cytochemical methods for detection of apoptosis. J Histochem Cytochem 49:821–832

    Article  PubMed  CAS  Google Scholar 

  5. Boutajangout A, Authelet M, Blanchard V et al (2004) Characterisation of cytoskeletal abnormalities in mice transgenic for wild-type human tau and familial Alzheimer’s disease mutants of APP and presenilin-1. Neurobiol Dis 15:47–60

    Article  PubMed  CAS  Google Scholar 

  6. Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol (Berl) 82:239–259

    Article  CAS  Google Scholar 

  7. Brady ST (1985) A novel brain ATPase with properties expected for the fast axonal transport motor. Nature 317:73–75

    Article  PubMed  CAS  Google Scholar 

  8. Brion JP (2006) Cellular changes in Alzheimer’s disease, Chap 92. In: Pathy MSJ, Sinclair AJ, Morley JE (eds) Principles and practice of geriatric medicine. Wiley, Chicester, pp 1073–1081

  9. Brion JP, Hanger DP, Couck AM, Anderton BH (1991) A68 proteins in Alzheimer’s disease are composed of several tau isoforms in a phosphorylated state which affects their electrophoretic mobilities. Biochem.J. 279:831–836

    PubMed  CAS  Google Scholar 

  10. Brion JP, Hanger DP, Bruce MT, Couck AM, Flament-Durand J, Anderton BH (1991) Tau in Alzheimer neurofibrillary tangles. N- and C-terminal regions are differentially associated with paired helical filaments and the location of a putative abnormal phosphorylation site. Biochem J 273(Pt 1):127–133

    PubMed  CAS  Google Scholar 

  11. Coleman M (2005) Axon degeneration mechanisms: commonality amid diversity. Nat Rev Neurosci 6:889–898

    Article  PubMed  CAS  Google Scholar 

  12. Cuchillo-Ibanez I, Seereeram A, Byers HL et al (2008) Phosphorylation of tau regulates its axonal transport by controlling its binding to kinesin. FASEB J 22:3186–3195

    Article  PubMed  CAS  Google Scholar 

  13. De Vos KJ, Grierson AJ, Ackerley S, Miller CC (2008) Role of axonal transport in neurodegenerative diseases. Annu Rev Neurosci 31:151–173

    Article  PubMed  Google Scholar 

  14. Dhaenens CM, Van Brussel E, Schraen-Maschke S, Pasquier F, Delacourte A, Sablonniere B (2004) Association study of three polymorphisms of kinesin light-chain 1 gene with Alzheimer’s disease. Neurosci Lett 368:290–292

    Article  PubMed  CAS  Google Scholar 

  15. Dixit R, Ross JL, Goldman YE, Holzbaur EL (2008) Differential regulation of dynein and kinesin motor proteins by tau. Science 319:1086–1089

    Article  PubMed  CAS  Google Scholar 

  16. Doble BW, Patel S, Wood GA, Kockeritz LK, Woodgett JR (2007) Functional redundancy of GSK-3alpha and GSK-3beta in Wnt/beta-catenin signaling shown by using an allelic series of embryonic stem cell lines. Dev Cell 12:957–971

    Article  PubMed  CAS  Google Scholar 

  17. Du J, Wei Y, Liu L et al (2010) A kinesin signaling complex mediates the ability of GSK-3beta to affect mood-associated behaviors. Proc Natl Acad Sci USA 107:11573–11578

    Article  PubMed  CAS  Google Scholar 

  18. Dustin P, Flament-Durand J (1982) Disturbances of axoplasmic transport in Alzheimer’s disease. In: Weiss DG, Gorio A (eds) Axoplasmic transport in physiology and pathology. Springer, Berlin, pp 131–136

  19. Falzone TL, Stokin GB, Lillo C et al (2009) Axonal stress kinase activation and Tau misbehavior induced by Kinesin-1 transport defects. J Neurosci 29:5758–5767

    Article  PubMed  CAS  Google Scholar 

  20. Hamos JE, DeGennaro LJ, Drachman DA (1989) Synaptic loss in Alzheimer’s disease and other dementias. Neurology 39:355–361

    PubMed  CAS  Google Scholar 

  21. Hollenbeck PJ, Saxton WM (2005) The axonal transport of mitochondria. J Cell Sci 118:5411–5419

    Article  PubMed  CAS  Google Scholar 

  22. Hooper C, Killick R, Lovestone S (2008) The GSK3 hypothesis of Alzheimer’s disease. J Neurochem 104:1433–1439

    Article  PubMed  CAS  Google Scholar 

  23. Kanaan NM, Morfini GA, LaPointe NE et al (2011) Pathogenic forms of tau inhibit kinesin-dependent axonal transport through a mechanism involving activation of axonal phosphotransferases. J Neurosci 31:9858–9868

    Article  PubMed  CAS  Google Scholar 

  24. Kimura N, Imamura O, Ono F, Terao K (2007) Aging attenuates dynactin-dynein interaction: down-regulation of dynein causes accumulation of endogenous tau and amyloid precursor protein in human neuroblastoma cells. J Neurosci Res 85:2909–2916

    Article  PubMed  CAS  Google Scholar 

  25. LaPointe NE, Morfini G, Pigino G et al (2009) The aminoterminus of Tau inhibits kinesin-dependent axonal transport: implications for filament toxicity. J Neurosci Res 87:440–451

    Article  PubMed  CAS  Google Scholar 

  26. Leroy K, Yilmaz Z, Brion JP (2007) Increased level of active GSK-3beta in Alzheimer’s disease and accumulation in argyrophilic grains and in neurones at different stages of neurofibrillary degeneration. Neuropathol Appl Neurobiol 33:43–55

    Article  PubMed  CAS  Google Scholar 

  27. Leroy K, Bretteville A, Schindowski K et al (2007) Early axonopathy preceding neurofibrillary tangles in mutant tau transgenic mice. Am J Pathol 171:976–992

    Article  PubMed  CAS  Google Scholar 

  28. Lovestone S, Hartley CL, Pearce J, Anderton BH (1996) Phosphorylation of tau by glycogen synthase kinase-3β in intact mammalian cells: The effects on the organization and stability of microtubules. Neurosci. 73:1145–1157

    Article  CAS  Google Scholar 

  29. Masliah E, Mallory M, Alford M et al (2001) Altered expression of synaptic proteins occurs early during progression of Alzheimer’s disease. Neurology 56:127–129

    PubMed  CAS  Google Scholar 

  30. McCart AE, Mahony D, Rothnagel JA (2003) Alternatively spliced products of the human kinesin light chain 1 (KNS2) gene. Traffic 4:576–580

    Article  PubMed  CAS  Google Scholar 

  31. Mirra SS, Heyman A, McKeel D et al (1991) The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer’s disease. Neurology 41:479–486

    PubMed  CAS  Google Scholar 

  32. Morel M, Authelet M, Dedecker R, Brion JP (2010) Glycogen synthase kinase-3beta and the p25 activator of cyclin dependent kinase 5 increase pausing of mitochondria in neurons. Neuroscience 167:1044–1056

    Article  PubMed  CAS  Google Scholar 

  33. Morfini G, Szebenyi G, Elluru R, Ratner N, Brady ST (2002) Glycogen synthase kinase 3 phosphorylates kinesin light chains and negatively regulates kinesin-based motility. EMBO J 21:281–293

    Article  PubMed  CAS  Google Scholar 

  34. Morfini G, Pigino G, Mizuno N, Kikkawa M, Brady ST (2007) tau binding to microtubules does not directly affect microtubule-based vesicle motility. J Neurosci Res 85:2620–2630

    Article  PubMed  CAS  Google Scholar 

  35. Morfini GA, Burns M, Binder LI et al (2009) Axonal transport defects in neurodegenerative diseases. J Neurosci 29:12776–12786

    Article  PubMed  CAS  Google Scholar 

  36. Morrison JH, Hof PR (1997) Life and death of neurons in the aging brain. Science 278:412–419

    Article  PubMed  CAS  Google Scholar 

  37. Otvos L Jr, Feiner L, Lang E, Szendrei GI, Goedert M, Lee VM-Y (1994) Monoclonal antibody PHF-1 recognizes tau protein phosphorylated at serine residues 396 and 404. J.Neurosci.Res. 39:669–673

    Article  PubMed  CAS  Google Scholar 

  38. Pei JJ, Tanaka T, Tung YC, Braak E, Iqbal K, Grundke-Iqbal I (1997) Distribution, levels, and activity of glycogen synthase kinase-3 in the Alzheimer disease brain. J Neuropathol Exp Neurol 56:70–78

    Article  PubMed  CAS  Google Scholar 

  39. Pfister KK, Fisher EM, Gibbons IR et al (2005) Cytoplasmic dynein nomenclature. J Cell Biol 171:411–413

    Article  PubMed  CAS  Google Scholar 

  40. Pigino G, Morfini G, Pelsman A, Mattson MP, Brady ST, Busciglio J (2003) Alzheimer’s presenilin 1 mutations impair kinesin-based axonal transport. J Neurosci 23:4499–4508

    PubMed  CAS  Google Scholar 

  41. Pigino G, Morfini G, Atagi Y et al (2009) Disruption of fast axonal transport is a pathogenic mechanism for intraneuronal amyloid beta. Proc Natl Acad Sci USA 106:5907–5912

    Article  PubMed  CAS  Google Scholar 

  42. Rahman A, Friedman DS, Goldstein LS (1998) Two kinesin light chain genes in mice. Identification and characterization of the encoded proteins. J Biol Chem 273:15395–15403

    Article  PubMed  CAS  Google Scholar 

  43. Richard S, Brion JP, Couck AM, Flament-Durand J (1989) Accumulation of smooth endoplasmic reticulum in Alzheimer’s disease: new morphological evidence of axoplasmic flow disturbances. J Submicrosc Cytol Pathol 21:461–467

    PubMed  CAS  Google Scholar 

  44. Scheff SW, Price DA, Schmitt FA, Mufson EJ (2006) Hippocampal synaptic loss in early Alzheimer’s disease and mild cognitive impairment. Neurobiol Aging 27:1372–1384

    Article  PubMed  CAS  Google Scholar 

  45. Spittaels K, Van den Haute C, Van Dorpe J et al (1999) Prominent axonopathy in the brain and spinal cord of transgenic mice overexpressing four-repeat human tau protein. Am J Pathol 155:2153–2165

    Article  PubMed  CAS  Google Scholar 

  46. Stagi M, Gorlovoy P, Larionov S, Takahashi K, Neumann H (2006) Unloading kinesin transported cargoes from the tubulin track via the inflammatory c-Jun N-terminal kinase pathway. FASEB J 20:2573–2575

    Article  PubMed  CAS  Google Scholar 

  47. Stamer K, Vogel R, Thies E, Mandelkow E, Mandelkow EM (2002) Tau blocks traffic of organelles, neurofilaments, and APP vesicles in neurons and enhances oxidative stress. J Cell Biol 156:1051–1063

    Article  PubMed  CAS  Google Scholar 

  48. Stokin GB, Lillo C, Falzone TL et al (2005) Axonopathy and transport deficits early in the pathogenesis of Alzheimer’s disease. Science 307:1282–1288

    Article  PubMed  CAS  Google Scholar 

  49. Takashima A, Noguchi K, Sato K, Hoshino T, Imahori K (1993) Tau protein kinase I is essential for amyloid beta-protein-induced neurotoxicity. Proc Natl Acad Sci USA 90:7789–7793

    Article  PubMed  CAS  Google Scholar 

  50. Vale RD, Reese TS, Sheetz MP (1985) Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell 42:39–50

    Article  PubMed  CAS  Google Scholar 

  51. Yuan A, Kumar A, Peterhoff C, Duff K, Nixon RA (2008) Axonal transport rates in vivo are unaffected by tau deletion or overexpression in mice. J Neurosci 28:1682–1687

    Article  PubMed  CAS  Google Scholar 

  52. Zhao C, Takita J, Tanaka Y et al (2001) Charcot-Marie-Tooth disease type 2A caused by mutation in a microtubule motor KIF1Bbeta. Cell 105:587–597

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Interuniversity Attraction Poles program (P6/43) of the Belgian Federal Science Policy Office (BELSPO), by the Diane program (Walloon region), by grants from the Fonds de la Recherche Scientifique Médicale, and the Fondation pour la Recherche sur la maladie d’Alzheimer/Stichting voor Alzheimer Onderzoek. M. Morel was supported by a grant from the Van Buuren Foundation. The authors thank Dr Doble (Mc Master University, Canada) for providing the GSK-3β-K85A construct.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Pierre Brion.

Electronic supplementary material

Below is the link to the electronic supplementary material.

401_2011_901_MOESM1_ESM.eps

Supplementary Figure S1: Detection of PHF-tau proteins in subjects used in this study. (a and b): Immunoblots of homogenates of the frontal cortex in control subjects (a) and in AD patients (b) with an anti-phosphotau antibody (PHF-1). Three main bands between 50 kD and 70 kD (PHF-tau proteins) were observed in AD frontal cortex. Control cases did not show these PHF-1 positive bands with the exception of one case (Fig. 1a, line 4) showing faintly reactive PHF-1 bands. Numbers on the left of blots refer to the positions of molecular weight markers: 36kD (Carbonic anhydrase), 50kD (alcohol dehydrogenase), 64kD (glutamic dehydrogenase), 98kD (BSA). (EPS 3,174 kb)

401_2011_901_MOESM2_ESM.eps

Supplementary Figure S2: Absence of phosphosensitivity of the KLC1 antibody. Homogenates of frontal cortex of the same subjects were treated (b) or not (a) with lambda phosphatase before immunoblotting with the anti-KLC1 antibody. Lanes 1 and 2: control subject. Lanes 3 and 4: AD patient. Prior dephosphorylation did not affect the level of labeling of KLC1 with the anti-KLC1 antibody. (EPS 4,080 kb)

Supplementary material 3 (DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morel, M., Héraud, C., Nicaise, C. et al. Levels of kinesin light chain and dynein intermediate chain are reduced in the frontal cortex in Alzheimer’s disease: implications for axoplasmic transport. Acta Neuropathol 123, 71–84 (2012). https://doi.org/10.1007/s00401-011-0901-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-011-0901-4

Keywords

Navigation