Skip to main content

Advertisement

Log in

Involvement of the human ventrolateral thalamus in olfaction

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

It is widely assumed that the thalamus is not involved in olfaction. The ventrolateral thalamus is, however, closely connected to the contralateral cerebellum, which is involved in the sense of smell based on findings from functional imaging studies and findings of olfactory deficits in patients with cerebellar disease. We hypothesized that olfactory deficits following lesions of the ventrolateral thalamus may be similar to olfactory deficits following cerebellar lesions. Fifteen patients with a focal thalamic lesion involving the ventrolateral thalamus were examined and compared to 15 patients with a focal cerebellar lesion and 15 healthy controls. A detailed olfactory test (“Sniffin’ Sticks”) was used to assess different olfactory functions separately for each nostril. In the group of patients with a lesion of the ventrolateral thalamus, an impairment of the odor threshold was found at the ipsilateral nostril, consistent with the unilateral orientation of the olfactory system in the telencephalon. In the group of patients with a cerebellar lesion, an olfactory deficit at the contralesional nostril emerged. In controls, no significant side difference was found. The involvement of the ventrolateral thalamus in olfaction is comparable to that of the cerebellum in respect to odor threshold. Further study is needed to assess if these findings are related to an impairment of an olfactomotor loop. Present evidence for this hypothesis is indirect. Effects were subclinical as none of the patients reported olfactory disturbance. The results suggest that the cerebello-thalamic axis plays an adjuvant role in olfaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Schünke M, Schulte E (2006) Prometheus – Kopf und Neuroanatomie. Thieme, Stuttgart

  2. Kay LM, Sherman SM (2007) An argument for an olfactory thalamus. Trends Neurosci 30:47–53

    Article  CAS  PubMed  Google Scholar 

  3. Gottfried JA (2006) Smell: central nervous processing. In: Hummel T, Welge-Lüssen A (eds) Taste and smell. An update. Adv Otorhinolaryngol, vol 63. Karger, Basel, pp 44–69

    Chapter  Google Scholar 

  4. Motokizawa F (1974) Olfactory input to the thalamus: electrophysiological evidence. Brain Res 67:334–337

    Article  CAS  PubMed  Google Scholar 

  5. Price JL (1985) Beyond the primary olfactory cortex: olfactory-related areas in the neocortex, thalamus and hypothalamus. Chem Senses 10:239–258

    Article  Google Scholar 

  6. Plailly J, Howard JD, Gitelman DR, Gottfried JA (2008) Attention to odor modulates thalamocortical connectivity in the human brain. J Neurosci 28:5257–5267

    Article  CAS  PubMed  Google Scholar 

  7. Potter H, Butters N (1980) An assessment of olfactory deficits in patients with damage to prefrontal cortex. Neuropsychologia 18:621–628

    Article  CAS  PubMed  Google Scholar 

  8. Rousseaux M, Muller P, Gahide I, Mottin Y, Romon M (1996) Disorders of smell, taste, and food intake in a patient with a dorsomedial thalamic infarct. Stroke 27:2328–2330

    CAS  PubMed  Google Scholar 

  9. Tham WW, Stevenson RJ, Miller LA (2009) The functional role of the medio dorsal thalamic nucleus in olfaction. Brain Res Rev 62:109–126

    Article  PubMed  Google Scholar 

  10. Sobel N, Prabhakaran V, Hartley CA et al (1998) Odorant-induced and sniff-induced activation in the cerebellum of the human. J Neurosci 18:8990–9001

    CAS  PubMed  Google Scholar 

  11. Ferdon S, Murphy C (2003) The cerebellum and olfaction in the aging brain: a functional magnetic resonance imaging study. Neuroimage 20:12–21

    Article  PubMed  Google Scholar 

  12. Yousem DM, Williams SC, Howard RO et al (1997) Functional MR imaging during odor stimulation: preliminary data. Radiology 204:833–838

    CAS  PubMed  Google Scholar 

  13. Qureshy A, Kawashima R, Imran MB et al (2000) Functional mapping of human brain in olfactory processing: a PET study. J Neurophysiol 84:1656–1666

    CAS  PubMed  Google Scholar 

  14. Abele M, Riet A, Hummel T, Klockgether T, Wüllner U (2003) Olfactory dysfunction in cerebellar ataxia and multiple system atrophy. J Neurol 250:1453–1455

    Article  PubMed  Google Scholar 

  15. Connelly T, Farmer JM, Lynch DR, Doty RL (2003) Olfactory dysfunction in degenerative ataxias. J Neurol Neurosurg Psychiatry 74:1435–1437

    Article  CAS  PubMed  Google Scholar 

  16. Mainland JD, Johnson BN, Khan R, Ivry RB, Sobel N (2005) Olfactory impairments in patients with unilateral cerebellar lesions are selective to inputs from the contralesional nostril. J Neurosci 6:6362–6371

    Article  Google Scholar 

  17. Stanton GB (1980) Topographical organization of ascending cerebellar projections from the dentate and interposed nuclei in Macaca mulatta: an anterograde degeneration study. J Comp Neurol 190:699–731

    Article  CAS  PubMed  Google Scholar 

  18. Sakai ST, Inase M, Tanji J (1996) Comparison of cerebellothalamic and pallidothalamic projections in the monkey (Macaca fuscata): a double anterograde labeling study. J Comp Neurol 368:215–228

    Article  CAS  PubMed  Google Scholar 

  19. Krack P, Dostrovsky J, Ilinsky I et al (2002) Surgery of the motor thalamus: problems with the present nomenclatures. Mov Disord 17:S2–S8

    Article  PubMed  Google Scholar 

  20. Bastian AJ, Thach WT (1995) Cerebellar outflow lesions: a comparison of movement deficits resulting from lesions at the levels of the cerebellum and thalamus. Ann Neurol 38:881–892

    Article  CAS  PubMed  Google Scholar 

  21. Melo TP, Bogousslavsky J, Moulin T, Nader J, Regli F (1992) Thalamic ataxia. J Neurol 239:331–337

    Article  CAS  PubMed  Google Scholar 

  22. Solomon DH, Barohn RJ, Bazan C, Grissom J (1994) The thalamic ataxia syndrome. Neurology 44:810–814

    CAS  PubMed  Google Scholar 

  23. Hummel T, Sekinger B, Wolf SR, Pauli E, Kobal G (1997) ‘Sniffin’ sticks’: olfactory performance assessed by the combined testing of odor identification, odor discrimination and olfactory threshold. Chem Senses 22:39–52

    Article  CAS  PubMed  Google Scholar 

  24. Hummel T, Kobal G, Gudziol H, Mackay-Sim A (2007) Normative data for the “Sniffin’ Sticks” including tests of odor identification, odor discrimination, and olfactory thresholds: an upgrade based on a group of more than 3,000 subjects. Eur Arch Otorhinolaryngol 264:237–243

    Article  CAS  PubMed  Google Scholar 

  25. Härting H, Markowitsch HJ, Neufeld H, Calabrese P, Deisinger K, Kessler J (2000) Wechsler Gedächtnistest–Revidierte Fassung. Hans Huber, Bern

    Google Scholar 

  26. Lehrl S (2005) Mehrfachwahl-Wortschatz-Intelligenztest MWT-B. Spitta Verlag, Balingen

    Google Scholar 

  27. Cosson A, Tatu L, Vuillier F, Parratte B, Diop M, Monnier G (2003) Arterial vascularization of the human thalamus: extra-parenchymal arterial groups. Surg Radiol Anat 25:408–415

    Article  CAS  PubMed  Google Scholar 

  28. Lascano AM, Hummel T, Lacroix JS, Landis BN, Michel CM (2010) Spatio-temporal dynamics of olfactory processing in the human brain: an event-related source imaging study. Neuroscience (in press)

  29. Bower JM (1997) Control of sensory data acquisition. Int Rev Neurobiol 41:489–513

    Article  CAS  PubMed  Google Scholar 

  30. Johnson BN, Mainland JD, Sobel N (2003) Rapid olfactory processing implicates subcortical control of an olfactomotor system. J Neurophysiol 90:1084–1094

    Article  PubMed  Google Scholar 

  31. Ikai Y, Takada M, Shinonaga Y, Mizuno N (1992) Dopaminergic and non-dopaminergic neurons in the ventral tegmental area of the rat project, respectively, to the cerebellar cortex and deep cerebellar nuclei. Neuroscience 51:719–728

    Article  CAS  PubMed  Google Scholar 

  32. Yatim N, Billig I, Compoint C, Buisseret P, Buisseret-Delmas C (1996) Trigeminocerebellar and trigemino-olivary projections in rats. Neurosci Res 25:267–283

    Article  CAS  PubMed  Google Scholar 

  33. Darian-Smith C, Darian-Smith I, Cheema SS (1990) Thalamic projections to sensorimotor cortex in the macaque monkey: use of multiple retrograde fluorescent tracers. J Comp Neurol 299:17–46

    Article  CAS  PubMed  Google Scholar 

  34. Middleton FA, Strick PL (2000) Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain Res Rev 31:236–250

    Article  CAS  PubMed  Google Scholar 

  35. Colebatch JG, Adams L, Murphy K et al (1991) Regional cerebral blood flow during volitional breathing in man. J Physiol 443:91–103

    CAS  PubMed  Google Scholar 

  36. Laing DG (1983) Natural sniffing gives optimum odour perception for humans. Perception 12:99–117

    Article  CAS  PubMed  Google Scholar 

  37. Hummel T, Kobal G (2001) Olfactory event-related potentials. In: Simon SA, Nicolelis MAL (eds) Methods and frontiers in chemosensory research. CRC Press, Boca Raton, pp 429–464

    Google Scholar 

  38. Newman PP, Reza H (1979) Functional relationships between the hippocampus and the cerebellum: an electrophysiological study of the cat. J Physiol 287:405–426

    CAS  PubMed  Google Scholar 

  39. Oganesian EA, Melik-Musian AB, Fanardzhian VV, IuKh Grigorian (1980) Morpho-functional analysis of the nature of cerebello-hippocampal connections. Fiziol Zh SSSR Im I M Sechenova 66:1632–1639

    CAS  PubMed  Google Scholar 

  40. Konczak J, Schoch B, Dimitrova A, Gizewski E, Timmann D (2005) Functional recovery of children and adolescents after cerebellar tumour resection. Brain 128:128–1441

    Article  Google Scholar 

  41. Miller Fischer C (1978) Thalamic pure sensory stroke: a pathologic study. Neurology 28:1141–1144

    Google Scholar 

  42. Schaltenbrand G, Wahren W (1977) Atlas for stereotaxy of the human brain. Thieme, Stuttgart

    Google Scholar 

Download references

Acknowledgments

This project was supported by the START-Program, Faculty of Medicine, RWTH Aachen. We thank Professor Dr. Willmes (Division of Neuropsychology, RWTH Aachen) for his statistical advice. Additionally, we thank Professor Coenen (Division of Neurosurgery, University Bonn) for critical comments on the imaging data.

Conflict of interest statement

There are no conflicts of interest to be disclosed.

Author information

Authors and Affiliations

Authors

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (DOC 770 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zobel, S., Hummel, T., Ilgner, J. et al. Involvement of the human ventrolateral thalamus in olfaction. J Neurol 257, 2037–2043 (2010). https://doi.org/10.1007/s00415-010-5656-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-010-5656-7

Keywords

Navigation