Skip to main content

Advertisement

Log in

Characterization of the basic fibroblast growth factor-evoked proliferation of the human Müller cell line, MIO-M1

  • Laboratory Investigation
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

Basic fibroblast growth factor (bFGF) has been suggested to mediate activation of Müller glial cells in the ischemic–hypoxic retina. However, the intracellular pathways activated by bFGF in human Müller cells have been little explored. We characterized the signaling transduction pathways which are involved in the control and growth factor-evoked proliferation of a recently described human Müller cell line, MIO-M1. In addition, we investigated whether bFGF evoked the release of vascular endothelial growth factor (VEGF) and hepatocyte growth factor (HGF) from the cells.

Methods

The growth factor-evoked proliferation of cultured MIO-M1 cells was estimated by means of a bromodeoxyuridine immunoassay, in the absence and presence of blockers of mitogen-activated protein kinases (MAPKs) and of the phosphatidylinositol-3 kinase (PI3K). The activation state of the p44/p42 MAPK was determined by Western blotting, and the bFGF-evoked release of VEGF and HGF was evaluated by ELISA.

Results

bFGF evoked a concentration-dependent increase of the cell proliferation, with an EC50 of ~1 ng/ml, via activation of both the p44/p42 MAPK and the p38 MAPK. In contrast, the mitogenic effects of the platelet-derived and the heparin-binding epidermal growth factors were dependent on p44/p42 MAPK activation and independent of activation of p38 MAPK. The transforming growth factors β1 and β2 also evoked cell proliferation which was independent of activation of the MAPKs investigated. bFGF evoked a release of VEGF and of HGF by the cells; these effects were independent of MAPK activation and were possibly mediated by activation of the PI3K signaling pathway.

Conclusion

bFGF evokes multiple intracellular signaling pathways in human Müller cells which underlie the gliotic cell responses upon ischemic–hypoxic insults in the retina. Beside the stimulation of cell proliferation, which is dependent on activation of p44/p42 and p38 MAPKs, bFGF induces the secretion of VEGF and HGF by Müller cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2A, B
Fig. 3
Fig. 4
Fig. 5A, B
Fig. 6
Fig. 7A, B
Fig. 8

Similar content being viewed by others

References

  1. Aiello LP, Northrup JM, Keyt BA, Takagi H, Iwamoto MA (1995) Hypoxic regulation of vascular endothelial growth factor in retinal cells. Arch Ophthalmol 113:1538–1544

    CAS  PubMed  Google Scholar 

  2. Akiyama H, Nakazawa T, Shimura M, Tomita H, Tamai M (2002) Presence of mitogen-activated protein kinase in retinal Muller cells and its neuroprotective effect ischemia-reperfusion injury. Neuroreport 13:2103–2107

    Article  CAS  PubMed  Google Scholar 

  3. Briggs MC, Grierson I, Hiscott P, Hunt JA (2000) Active scatter factor (HGF/SF) in proliferative vitreoretinal disease. Invest Ophthalmol Vis Sci 41:3085–3094

    CAS  PubMed  Google Scholar 

  4. Bringmann A, Reichenbach A (2001) Role of Müller cells in retinal degenerations. Front Biosci 6: E72-E92

    CAS  PubMed  Google Scholar 

  5. Cassidy L, Barry P, Shaw C, Duffy J, Kennedy S (1998) Platelet derived growth factor and fibroblast growth factor basic levels in the vitreous of patients with vitreoretinal disorders. Br J Ophthalmol 82:181–185

    CAS  PubMed  Google Scholar 

  6. D’Amore PA (1994) Mechanisms of retinal and choroidal neovascularization. Invest Ophthalmol Vis Sci 35:3974–3979

    CAS  PubMed  Google Scholar 

  7. Faktorovich EG, Steinberg RH, Yasumura D, Matthes MT, LaVail MM (1990) Photoreceptor degeneration in inherited retinal dystrophy delayed by basic fibroblast growth factor. Nature 347:83–86

    CAS  PubMed  Google Scholar 

  8. Fischer AJ, McGuire C, Dierks BD, Reh TA (2002) Insulin and FGF2 activate a neurogenic program in Müller glia. J Neurosci 22:9387–9398

    CAS  PubMed  Google Scholar 

  9. Fisher SK, Erickson PA, Lewis GP, Anderson DH (1991) Intraretinal proliferation induced by retinal detachment. Invest Ophthalmol Vis Sci 32:1739–1748

    CAS  PubMed  Google Scholar 

  10. Geller SF, Lewis GP, Fisher SK (2001) FGFR1, signaling, and AP-1 expression after retinal detachment: reactive Müller and RPE cells. Invest Ophthalmol Vis Sci 42:1363–1369

    CAS  PubMed  Google Scholar 

  11. Guillonneau X, Regnier-Ricard F, Laplace O, Jonet L, Bryckaert M, Courtois Y, Mascarelli F (1998) Fibroblast growth factor (FGF) soluble receptor 1 acts as a natural inhibitor of FGF2 neurotrophic activity during retinal degeneration. Mol Biol Cell 9:2785–2802

    CAS  PubMed  Google Scholar 

  12. He PM, He S, Garner JA, Ryan SJ, Hinton DR (1998) Retinal pigment epithelial cells secrete and respond to hepatocyte growth factor. Biochem Biophys Res Commun 249:253–257

    Article  CAS  PubMed  Google Scholar 

  13. Hueber A, Wiedemann P, Esser P, Heimann K (1996) Basic fibroblast growth factor mRNA, bFGF peptide and FGF receptor in epiretinal membranes of intraocular proliferative disorders (PVR and PDR). Int Ophthalmol 20:345–350

    PubMed  Google Scholar 

  14. Kinkl N, Sahel J, Hicks D (2001) Alternate FGF2-ERK1/2 signaling pathways in retinal photoreceptor and glial cells in vitro. J Biol Chem 276:43871–43878

    Article  CAS  PubMed  Google Scholar 

  15. Kon CH, Occleston NL, Aylward GW, Khaw PT (1999) Expression of vitreous cytokines in proliferative vitreoretinopathy: a prospective study. Invest Ophthalmol Vis Sci 40:705–712

    CAS  PubMed  Google Scholar 

  16. Kruchkova Y, Ben-Dror I, Herschkovitz A, David M, Yayon A, Vardimon L (2001) Basic fibroblast growth factor: a potential inhibitor of glutamine synthetase expression in injured neural tissue. J Neurochem 77:1641–1649

    Article  CAS  PubMed  Google Scholar 

  17. Lane HA, Fernandez A, Lamb NJ, Thomas G (1993) p70s6 k function is essential for G1 progression. Nature 363:170–172

    Article  CAS  PubMed  Google Scholar 

  18. Lashkari K, Rahimi N, Kazlauskas A (1999) Hepatocyte growth factor receptor in human RPE cells: implications in proliferative vitreoretinopathy. Invest Ophthalmol Vis Sci 40:149–156

    CAS  PubMed  Google Scholar 

  19. Leschey KH, Hackett SF, Singer JH, Campochiaro PA (1990) Growth factor responsiveness of human retinal pigmented epithelial cells. Invest Ophthalmol Vis Sci 31:839–846

    CAS  PubMed  Google Scholar 

  20. Lewis GP, Mervin K, Valter K, Maslim J, Kappel PJ, Stone J, Fisher S (1999) Limiting the proliferation and reactivity of retinal Müller cells during experimental retinal detachment: the value of oxygen supplementation. Am J Ophthalmol 128:165–172

    Article  CAS  PubMed  Google Scholar 

  21. Limb GA, Salt TE, Munro PM, Moss SE, Khaw PT (2002) In vitro characterization of a spontaneously immortalized human Muller cell line (MIO-M1). Invest Ophthalmol Vis Sci 43:864–869

    PubMed  Google Scholar 

  22. Maher P (1999) p38 Mitogen-activated protein kinase activation is required for fibroblast growth factor-2-stimulated cell proliferation but not differentiation. J Biol Chem 274:17491–17498

    Article  CAS  PubMed  Google Scholar 

  23. Mervin K, Valter K, Maslim J, Lewis G, Fisher S, Stone J (1999) Limiting photoreceptor death and deconstruction during experimental retinal detachment: the value of oxygen supplementation. Am J Ophthalmol 128:155–164

    Article  CAS  PubMed  Google Scholar 

  24. Milenkovic I, Weick M, Wiedemann P, Reichenbach A, Bringmann A (2003) P2Y receptor-mediated stimulation of Müller glial cell DNA synthesis: dependence on EGF and PDGF receptor transactivation. Invest Ophthalmol Vis Sci 44:1211–1220

    Article  PubMed  Google Scholar 

  25. Moustakas A, Souchelnytskyi S, Heldin CH (2001) Smad regulation in TGF-β signal transduction. J Cell Sci 114:4359–4369

    CAS  PubMed  Google Scholar 

  26. Puro DG (1995) Growth factors and Müller cells. Prog Retin Eye Res 15:89–101

    Article  Google Scholar 

  27. Schiemann WP, Blobe GC, Kalume DE, Pandey A, Lodish HF (2002) Context-specific effects of fibulin-5 (DANCE/EVEC) on cell proliferation, motility, and invasion. Fibulin-5 is induced by transforming growth factor-β and affects protein kinase cascades. J Biol Chem 277:27367–27377

    Article  CAS  PubMed  Google Scholar 

  28. Shibuki H, Katai N, Kuroiwa S, Kurokawa T, Arai J, Matsumoto K, Nakamura T, Yoshimura N (2002) Expression and neuroprotective effect of hepatocyte growth factor in retinal ischemia-reperfusion injury. Invest Ophthalmol Vis Sci 43:528–536

    PubMed  Google Scholar 

  29. Stone J, Maslim J, Valter-Kocsi K, Mervin K, Bowers F, Chu Y, Barnett N, Provis J, Lewis G, Fisher SK, Bisti S, Gargini C, Cervetto L, Merin S, Peer J (1999) Mechanisms of photoreceptor death and survival in mammalian retina. Prog Retin Eye Res 18:689–735

    Article  CAS  PubMed  Google Scholar 

  30. Wahlin KJ, Campochiaro PA, Zack DJ, Adler R (2000) Neurotrophic factors cause activation of intracellular signaling pathways in Müller cells and other cells of the inner retina, but not photoreceptors. Invest Ophthalmol Vis Sci 41:927–936

    CAS  PubMed  Google Scholar 

  31. Walsh N, Valter K, Stone J (2001) Cellular and subcellular patterns of expression of bFGF and CNTF in the normal and light stressed adult rat retina. Exp Eye Res 72:495–501

    Article  CAS  PubMed  Google Scholar 

  32. Wen R, Song Y, Cheng T, Matthes MT, Yasumura D, LaVail MM, Steinberg RH (1995) Injury-induced upregulation of bFGF and CNTF mRNAs in the rat retina. J Neurosci 15:7377–7385

    CAS  PubMed  Google Scholar 

  33. Yonekura A, Osaki M, Hirota Y, Tsukazaki T, Miyazaki Y, Matsumoto T, Ohtsuru A, Namba H, Shindo H, Yamashita S (1999) Transforming growth factor-beta stimulates articular chondrocyte cell growth through p44/42 MAP kinase (ERK) activation. Endocr J 46:545–553

    CAS  PubMed  Google Scholar 

  34. Yu L, Hebert MC, Zhang YE (2002) TGF-beta receptor-activated p38 MAP kinase mediates Smad-independent TGF-β responses. EMBO J 21:3749–3759

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Mrs. U. Weinbrecht and F. Kutzera for excellent technical assistance. This work was supported by grants from the Deutsche Forschungsgemeinschaft (Ko1547/4-1; Br 1249/2-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margrit Hollborn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hollborn, M., Jahn, K., Limb, G.A. et al. Characterization of the basic fibroblast growth factor-evoked proliferation of the human Müller cell line, MIO-M1. Graefe's Arch Clin Exp Ophthalmol 242, 414–422 (2004). https://doi.org/10.1007/s00417-004-0879-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-004-0879-x

Keywords

Navigation