Skip to main content

Advertisement

Log in

Cholinergic modulation of the cortical neuronal network

Pflügers Archiv Aims and scope Submit manuscript

Abstract

Acetylcholine (ACh) is an important neurotransmitter of the CNS that binds both nicotinic and muscarinic receptors to exert its action. However, the mechanisms underlying the effects of cholinergic receptors have still not been completely elucidated. Central cholinergic neurons, mainly located in basal forebrain, send their projections to different structures including the cortex. The cortical innervation is diffuse and roughly topographic, which has prompted some authors to suspect a modulating role of ACh on the activity of the cortical network rather than a direct synaptic role. The cholinergic system is implicated in functional, behavioural and pathological states including cognitive function, nicotine addiction, Alzheimer's disease, Tourette's syndrome, epilepsies and schizophrenia. As these processes depend on the activation of glutamatergic and GABAergic systems, the cholinergic terminals must exert their effects via the modulation of excitatory and/or inhibitory neurotransmission. However, the understanding of cholinergic modulation is complex because it is the result of a mixture of positive and negative modulation, implying that there are various types, or even subtypes, of cholinergic receptors. In this review, we summarize the current knowledge on central cholinergic systems (projections and receptors) and then aim to focus on the implications for ACh in the modulation of cortical neuronal activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4A–C.

References

  1. Adams DJ, Nutter TJ (1992) Calcium permeability and modulation of nicotinic acetylcholine receptor-channels in rat parasympathetic neurons. J Physiol (Paris) 86:67–76

    Google Scholar 

  2. Adem A, Karlsson E (1997) Muscarinic receptor subtype selective toxins. Life Sci 60:1069–1076

    Article  CAS  PubMed  Google Scholar 

  3. Alkondon M, Albuquerque EX (1993) Diversity of nicotinic acetylcholine receptors in rat hippocampal neurons. Part I: Pharmacological and functional evidence for distinct structural subtypes. J Pharmacol Exp Ther 265:1455–1473

    CAS  PubMed  Google Scholar 

  4. Alkondon M, Pereira EFR, Eisenberg HM, Albuquerque EX (2000) Nicotinic receptor activation in human cerebral cortical interneurons: a mechanism for inhibition and disinhibition of neural networks. J Neurosci 20:66–75

    CAS  PubMed  Google Scholar 

  5. Alkondon M, Pereira EFR, Wannacott S, Albuquerque EX (1992) Blockade of nicotinic currents in hippocampal neurons defines methyllycaconitine as a potent and specific receptor antagonist. Mol Pharmacol 41:802–808

    CAS  PubMed  Google Scholar 

  6. Amador M, Dani JA (1995) Mechanism for modulation of nicotinic acetylcholine receptors that can influence synaptic transmission. J Neurosci 15:4525–4532

    CAS  PubMed  Google Scholar 

  7. Aramakis VB, Bandrowski AE, Ashe JH (1997) Muscarinic reduction of GABAergic synaptic potentials results in disinhibition of the AMPA/kainate-mediated EPSP in auditory cortex. Brain Res 758:107–117

    CAS  PubMed  Google Scholar 

  8. Arendt T, Bigl V, Arendt A (1984) Neurone loss in the nucleus basalis of Meynert in Creutzfeldt-Jakob disease. Acta Neuropathol (Berl) 65:85–88

    Google Scholar 

  9. Arendt T, Bigl V, Arendt A, Tennstedt A (1983) Loss of neurons in the nucleus basalis of Meynert in Alzheimer's disease, paralysis agitans and Korsakoff's disease. Acta Neuropathol (Berl) 61:101–108

    Google Scholar 

  10. Bandrowski AE, Moore SL, Ashe JH (2001) Cholinergic synaptic potentials in the supragranular layers of auditory cortex. Synapse 41:118–130

    Article  CAS  PubMed  Google Scholar 

  11. Banerjee S, Punzi JS, Kreilick K, Abood LG (1990) [3H]Mecamylamine binding to rat brain membranes. Studies with mecamylamine and nicotine analogues. Biochem Pharmacol 40:2105–2110

    Article  CAS  PubMed  Google Scholar 

  12. Barlow RB, McMillen LS, Veale MA (1991) The use of 4-diphenylacetoxy-N-(2-chloroethyl)-piperidine (4-DAMP mustard) for estimating the apparent affinities of some agonists acting at muscarinic receptors in guinea-pig ileum. Br J Pharmacol 102:657–662

    CAS  PubMed  Google Scholar 

  13. Bayraktar T, Staiger JF, Acsady L, Cozzari C, Freund TZ, Zilles K (1997) Co-localization of vasopressive intestinal polypeptide, γ-aminobutyric acid and choline acetyltransferase in neocortical interneurons of the adult rat. Brain Res 757:209–217

    Article  CAS  PubMed  Google Scholar 

  14. Bertrand D, Valera S, Bed S, Ballivet M, Rungger D (1991) Steroids inhibit nicotinic acetylcholine receptors. Neuroreport 2:277–280

    CAS  PubMed  Google Scholar 

  15. Bigl V, Woolf NJ, Butcher LL (1982) Cholinergic projections from the basal forebrain to frontal, parietal, temporal, occipital, and cingulate cortices: a combined fluorescent tracer and acetylcholinesterase analysis. Brain Res Bull 8:727–749

    CAS  PubMed  Google Scholar 

  16. Bonanno G, Ruelle A, Andrioli GC, Raiteri M (1991) Cholinergic nerve terminals of human cerebral cortex possess a GABA transporter whose activation induces release of acetylcholine. Brain Res 539:191–195

    CAS  PubMed  Google Scholar 

  17. Bonner TI, Buckley NJ, Young AC, Brann MR (1987) Identification of a family of muscarinic acetylcholine receptor genes. Science 237:527–532

    CAS  PubMed  Google Scholar 

  18. Borg-Graham LJ, Monier C, Fregnac Y (1998) Visual input evokes transient and strong shunting inhibition in visual cortical neurons. Nature 393:369–373

    CAS  PubMed  Google Scholar 

  19. Boulter J, O'Shea-Greenfield A, Duvoisin RM, Connolly JG, Wada E, Jensen A, Gardner PD, Ballivet M, Deneris ES, McKinnon D (1990) Alpha 3, alpha 5, and beta 4: three members of the rat neuronal nicotinic acetylcholine receptor-related gene family form a gene cluster. J Biol Chem 265:4472–4482

    CAS  PubMed  Google Scholar 

  20. Boyd RT (1997) The molecular biology of neuronal nicotinic acetylcholine receptors. Crit Rev Toxicol 27:299–318

    Google Scholar 

  21. Brann MR, Buckley NJ, Bonner TI (1988) The striatum and cerebral cortex express different muscarinic receptor mRNAs. FEBS Lett 230:90–94

    Article  CAS  PubMed  Google Scholar 

  22. Broide RS, Leslie FM (1999) The alpha7 nicotinic acetylcholine receptor in neuronal plasticity. Mol Neurobiol 20:1–16

    CAS  PubMed  Google Scholar 

  23. Broide RS, O'Connor LT, Smith MA, Smith JA, Leslie FM (1995) Developmental expression of alpha 7 neuronal nicotinic receptor messenger RNA in rat sensory cortex and thalamus. Neuroscience 67:83–89

    Article  CAS  PubMed  Google Scholar 

  24. Bucci DJ, Holland PC, Gallagher M (1998) Removal of cholinergic input to rat posterior parietal cortex disrupts incremental processing of conditioned stimuli. J Neurosci 18:8038–8046

    CAS  PubMed  Google Scholar 

  25. Buckley NJ, Bonner TI, Brann MR (1988) Localization of a family of muscarinic receptor mRNAs in rat brain. J Neurosci 8:4646–4652

    CAS  PubMed  Google Scholar 

  26. Butcher LL, Oh JD, Woolf NH (1993) Cholinergic neurons identified by in situ hybridization histochemistry. Prog Brain Res 98:1–8

    CAS  Google Scholar 

  27. Butcher LL, Semba K (1989) Reassessing the cholinergic basal forebrain: nomenclature schemata and concepts. Trends Neurosci 12:483–485

    CAS  PubMed  Google Scholar 

  28. Carsi-Gabrenas JM, Van der Zee EA, Luiten PG, Potter LT (1997) Non-selectivity of the monoclonal antibody M35 for subtypes of muscarinic acetylcholine receptors. Brain Res Bull 44:25–31

    Article  CAS  PubMed  Google Scholar 

  29. Cartier L, Verdugo R, Vergara C, Galvez S (1989) The nucleus basalis of Meynert in 20 definite cases of Creutzfeldt-Jakob disease. J Neurol Neurosurg Psychiatr 52:304–309

    CAS  PubMed  Google Scholar 

  30. Caulfield MR (1993) Muscarinic receptors – characterization, coupling and function. Pharmacol Ther 58:319–379

    CAS  PubMed  Google Scholar 

  31. Caulfield MP, Birdsall NJM (1998) International Union of Pharmacology. XVII. Classification of muscarinic acetylcholine receptors. Pharmac Rev 50:279–290

    CAS  Google Scholar 

  32. Changeux JP, Bertrand D, Corringer P-J, Dehaene S, Edelstein S, Lena C, Le Novere N, Marubio N, Picciotto M, Zoli M (1998) Brain nicotinic receptors: structure and regulation, role in learning and reinforcement. Brain Res Rev 26:198–216

    CAS  PubMed  Google Scholar 

  33. Chavez-Noriega LE, Crona JH, Washburn MS, Urrutia A, Elliot KJ, Elliot EC (1997) Pharmacological characterization of recombinant human neuronal nicotinic acetylcholine receptors h alpha 2 beta 2, h alpha 2 beta 4, h alpha 3 beta 2, h alpha 3 beta 4, h alpha 4 beta 2, h alpha 4 beta 4 and h alpha 7 expressed in Xenopus oocytes. J Pharmacol Exp Ther 280:346–356

    PubMed  Google Scholar 

  34. Chedotal A, Cozzari C, Faure MP, Hartman BK, Hamel E (1994) Distinct choline acetyltransferase (ChAT) and vasopressive intestinal polypeptide (VIP) bipolar neurons project to local blood vessels in the rat cerebral cortex. Brain Res 646:181–193

    CAS  PubMed  Google Scholar 

  35. Clarke PB, Reuben M, el-Bizri H (1994) Blockade of nicotinic responses by physostigmine, tacrine and other cholinesterase inhibitors in rat striatum. Br J Pharmacol 111:695–702

    CAS  PubMed  Google Scholar 

  36. Couturier S, Bertrand D, Matter JM, Hernandez MC, Bertrand S, Millar N, Valera S, Barkas T, Ballivet M (1990) A neuronal nicotinic acetylcholine receptor subunit (alpha 7) is developmentally regulated and forms a homo-oligomeric channel blocked by alpha-BTX. Neuron 5:847–856

    PubMed  Google Scholar 

  37. Couturier S, Erkman L, Valera S, Rungger D, Bertrand S, Boulter J, Ballivet M, Bertrand D (1990) Alpha 5, alpha 3, and non-alpha 3. Three clustered avian genes encoding neuronal nicotinic acetylcholine receptor-related subunits. J Biol Chem 265:17560–17567

    CAS  PubMed  Google Scholar 

  38. Curtis CA, Wheatley M, Bansal S, Birdsall NJ, Eveleigh P, Pedder EK, Poyner D, Hulme EC (1989) Propylbenzilylcholine mustard labels an acidic residue in transmembrane helix 3 of the muscarinic receptor. J Biol Chem 264:489–495

    CAS  PubMed  Google Scholar 

  39. Dani JA (2001) Overview of nicotinic receptors and their roles in the central nervous system. Biol Psychiatr 49:166–174

    Article  CAS  Google Scholar 

  40. Davies AR, Hardick DJ, Blagbrough IS, Potter BV, Wolstenholme AJ, Wonnacott S (1999) Characterisation of the binding of [3H]methyllycaconitine: a new radioligand for labelling alpha 7-type neuronal nicotinic acetylcholine receptors. Neuropharmacology 38:679–690

    Article  CAS  PubMed  Google Scholar 

  41. Day J, Fibiger HC (1992) Dopaminergic regulation of cortical cholinergic release. Synapse 12:281–286

    CAS  PubMed  Google Scholar 

  42. Delacour J, Houcine O, Costa JC (1990) Evidence for a cholinergic mechanism of "learned" changes in the responses of barrel field neurons of the awake and undrugged rat. Neuroscience 34:1–8

    CAS  PubMed  Google Scholar 

  43. Deneris ES, Boulter J, Swanson LW, Patrick J, Heinemann S (1989) Beta 3: a new member of nicotinic acetylcholine receptor gene family is expressed in brain. J Biol Chem 264:6268–6272

    CAS  PubMed  Google Scholar 

  44. Deneris ES, Connolly J, Boulter J, Wada E, Wada K, Swanson LW, Patrick J, Heinemann S (1988) Primary structure and expression of beta 2: a novel subunit of neuronal nicotinic acetylcholine receptors. Neuron 1:45–54

    CAS  PubMed  Google Scholar 

  45. Dineley-Miller K, Patrick J (1992) Gene transcripts for the nicotinic acetylcholine receptor subunit, beta4, are distributed in multiple areas of the rat central nervous system. Brain Res Mol Brain Res 16:339–344

    CAS  PubMed  Google Scholar 

  46. Dodd J, Dingledine R, Kelly JS (1981) The excitatory action of acetylcholine on hippocampal neurones of the guinea pig and rat maintained in vitro. Brain Res 207:109–127

    CAS  PubMed  Google Scholar 

  47. Dominguez del Toro E, Juiz JM, Peng X, Lindstrom J, Criado M (1994) Immunocytochemical localization of the alpha 7 subunit of the nicotinic acetylcholine receptor in the rat central nervous system. J Comp Neurol 349:325–342

    PubMed  Google Scholar 

  48. Donoghue JP, Carroll KL (1987) Cholinergic modulation of sensory responses in rat primary somatic sensory cortex. Brain Res 408:367–371

    CAS  PubMed  Google Scholar 

  49. Douglas CL, Baghdoyan HA, Lydic R (2001) M2 muscarinic autoreceptors modulate acetylcholine release in prefrontal cortex of C57BL/6 J mouse. J Pharmacol Exp Ther 299:960–966

    CAS  PubMed  Google Scholar 

  50. Dubois B, Ruberg M, Javoy-Agid F, Ploska A, Agid Y (1983) A subcortico-cortical cholinergic system is affected in Parkinson's disease. Brain Res 288:213–218

    CAS  PubMed  Google Scholar 

  51. Duvoisin RM, Deneris ES, Patrick J, Heinemann S (1989) The functional diversity of the neuronal nicotinic acetylcholine receptors is increased by a novel subunit: beta 4. Neuron 3:487–496

    CAS  PubMed  Google Scholar 

  52. Dwoskin LP, Xu R, Ayers JT, Crooks PA (2000) Recent developments in neuronal nicotinic acetylcholine receptor antagonists. Exp Opin Ther Patents 10(10):1561–1581

    CAS  Google Scholar 

  53. Eckenstein F, Thoenen (1983) Cholinergic neurons in the rat cerebral cortex demonstrated by immunohistochemical localization of choline acetyltransferase. Neurosci Lett 36:211–215

    CAS  PubMed  Google Scholar 

  54. Egan TM, North RA (1986) Acetylcholine hyperpolarizes central neurones by acting on an M2 muscarinic receptor. Nature 319:405–407

    CAS  PubMed  Google Scholar 

  55. Ehlert FJ, Delen FM, Yun SH, Tran P (1991) Differential coupling of subtypes of the muscarinic receptor to signaling mechanisms in brain and peripheral tissues. Adv Exp Med Biol 287:301–312

    CAS  PubMed  Google Scholar 

  56. Elgoyhen AB, Johnson DS, Boulter J, Vetter DE, Heinemann S (1994) α9: an acetylcholine receptor with novel pharmacological properties expressed in rat cochlear hair cells. Cell 79:705–715

    CAS  PubMed  Google Scholar 

  57. Elgoyhen AB, Vetter DE, Katz E, Rothlin CV, Heinemann SF, Boulter J (2001) Alpha 10: a determinant of nicotinic cholinergic receptor function in mammalian vestibular and cochlear mechanosensory hair cells. Proc Natl Acad Sci USA 98:3501–3506

    Article  CAS  PubMed  Google Scholar 

  58. Fadel J, Sarter M, Bruno JP (2001) Basal forebrain glutamatergic modulation of cortical acetylcholine release. Synapse 39:201–212

    Article  CAS  PubMed  Google Scholar 

  59. Fairclough RH, Joseph R, Richman DP (1993) Imaging ligand binding sites on the Torpedo acetylcholine receptor. Ann N Y Acad Sci 681:113–125

    CAS  PubMed  Google Scholar 

  60. Felder CC (1995) Muscarinic acetylcholine receptors: signal transduction through multiple effectors. FASEB J 9:619–625

    CAS  PubMed  Google Scholar 

  61. Fibiger HC (1982) The organization and some projections of cholinergic neurons of the mammalian forebrain. Brain Res 257:327–388

    CAS  PubMed  Google Scholar 

  62. Fine A, Hoyle C, Maclean CJ, Levatte TL, Baker HF, Ridley RM (1997) Learning impairments following injection of a selective cholinergic immunotoxin, ME20.4 IgG-saporin, into the basal nucleus of Meynert in monkeys. Neuroscience 81:331–343

    Article  CAS  PubMed  Google Scholar 

  63. Fisher RS, Buchwald NA, Hull CD, Levine MS (1988) GABAergic basal forebrain neurons project to the neocortex: the localization of glutamic acid decarboxylase and cholineacetyltransferase in feline corticopetal neurons. J Comp Neurol 272:489–502

    CAS  PubMed  Google Scholar 

  64. Frazier CJ, Buhler AV, Weiner JL, Dunwiddie TV (1998) Synaptic potential mediated via alpha-bungarotoxin-sensitive nicotinic acetylcholine receptors in rat hippocampal interneurons. J Neurosci 18:8228–8235

    CAS  PubMed  Google Scholar 

  65. Frazier CJ, Rollins YD, Breese CR, Leonard S, Freedman R, Dunwiddie TV (1998) Acetylcholine activates an alpha-bungarotoxin-sensitive nicotinic current in rat hippocampal interneurons, but not pyramidal cells. J Neurosci 18(4):1187–1195

    CAS  PubMed  Google Scholar 

  66. Freund TF, Meskenaite V (1992) Gamma-aminobutyric acid-containing basal forebrain neurons innervate inhibitory interneurons in the neocortex. Proc Natl Acad Sci USA 89:738–742

    CAS  PubMed  Google Scholar 

  67. Gähwiler BH, Brown DA (1987) Muscarine affects calcium-currents in rat hippocampal pyramidal cells in vitro. Neurosci Lett 76:301–306

    PubMed  Google Scholar 

  68. Galzi JL, Changeux JP (1995) Neuronal nicotinic receptors: molecular organization and regulations. Neuropharmacology 34:563–582

    Google Scholar 

  69. Gerzanich V, Anand R, Lindstrom J (1994) Homomers of alpha 8 and alpha 7 subunits of nicotinic receptors exhibit similar channel but contrasting binding site properties. Mol Pharmacol 45:212–220

    CAS  PubMed  Google Scholar 

  70. Gil Z, Connors BW, Amitai V (1997) Differential regulation of neocortical synapses by neuromodulators and activity. Neuron 19:679–686

    Google Scholar 

  71. Gioanni Y, Rougeot C, Clarke PB, Lepouse C, Thierry AM, Vidal C (1999) Nicotinic receptors in the rat prefrontal cortex: increase in glutamate release and facilitation of mediodorsal thalamo-cortical transmission. Eur J Neurosci 11(1):18–30

    CAS  PubMed  Google Scholar 

  72. Haga T, Haga K, Kameyama K, Nakata H (1993) Phosphorylation of muscarinic receptors: regulation by G proteins. Life Sci 52:421–428

    Article  CAS  PubMed  Google Scholar 

  73. Hammer R, Berrie CP, Birdsall NJ, Burgen AS, Hulme EC (1980) Pirenzepine distinguishes between different subclasses of muscarinic receptors. Nature 283:90–92

    CAS  PubMed  Google Scholar 

  74. Hasselmo ME, Anderson BP, Bower JM (1992) Cholinergic modulation of cortical associative memory function. J Neurophysiol 67:1230–1246

    CAS  PubMed  Google Scholar 

  75. Hasselmo ME, Bower JM (1992) Cholinergic suppression specific to intrinsic not afferent fiber synapses in rat piriform (olfactory) cortex. J Neurophysiol 67:1222–1229

    CAS  PubMed  Google Scholar 

  76. Henderson Z (1981) A projection from acetylcholinesterase-containing neurones in the diagonal band to the occipital cortex of the rat. Neuroscience 6:1081–1088

    CAS  PubMed  Google Scholar 

  77. Hill JA Jr, Zoli M, Bourgeois JP, Changeux JP (1993) Immunocytochemical localization of a neuronal nicotinic receptor: the beta 2-subunit. J Neurosci 13:1551–1568

    CAS  PubMed  Google Scholar 

  78. Hirano H, Day J, Fibiger HC (1995) Serotoninergic regulation of acetylcholine release in the rat frontal cortex. J Neurochem 65:1139–1145

    CAS  PubMed  Google Scholar 

  79. Hohmann CF, Kwiterovich KK, Oster-Granite ML, Coyle JT (1991) Newborn basal forebrain lesions disrupt cortical cytodifferentiation as visualized by rapid Golgi staining. Cereb Cortex 1(2):143–157

    CAS  PubMed  Google Scholar 

  80. Hulme EC, Birdsall NJ, Buckley NJ (1990) Muscarinic receptor subtypes. Annu Rev Pharmacol Toxicol 30:633–673

    CAS  PubMed  Google Scholar 

  81. Jasper HH, Tessier J (1971) Acetylcholine liberation from cerebral cortex during paradoxical (REM) sleep. Science 172:601–602

    CAS  PubMed  Google Scholar 

  82. Jimenez-Capdeville ME, Dykes RW (1996) Changes in cortical acetylcholine release in the rat during day and night: differences between motor and sensory areas. Neuroscience 71:567 –579

    Article  CAS  PubMed  Google Scholar 

  83. Jimenez-Capdeville ME, Dykes RW, Myasnikov AA (1997) Differential control of cortical activity by the basal forebrain in rats: a role for both cholinergic and inhibitory influences. J Comp Neurol 381:53–67

    Google Scholar 

  84. Johnston MV, McKinney M, Coyle JT (1981) Neocortical cholinergic innervation: a description of extrinsic and intrinsic components in the rat. Exp Brain Res 43:159–172

    CAS  PubMed  Google Scholar 

  85. Juliano SL, Ma W, Eslin D (1991) Cholinergic depletion prevents expansion of topographic maps in somatosensory cortex. Proc Natl Acad Sci USA 88:780–784

    CAS  PubMed  Google Scholar 

  86. Kao PN, Karlin A (1986) Acetylcholine receptor binding site contains a disulfide cross-link between adjacent half-cystinyl residues. J Biol Chem 261:8085–8088

    CAS  PubMed  Google Scholar 

  87. Kawagushi Y (1997) Selective cholinergic modulation of cortical GABAergic cell subtypes. J Neurophysiol 78:1746–1747

    Google Scholar 

  88. Kellar KJ, Martino AM, Hall DP Jr, Schwartz RD, Taylor RL (1985) High-affinity binding of [3H]acetylcholine to muscarinic cholinergic receptors. J Neurosci 5:1577–1582

    Google Scholar 

  89. Kimura F (2000) Cholinergic modulation of cortical function: a hypothetical role in shifting the dynamics in cortical network. Neurosci Res 38:19–26

    Article  CAS  PubMed  Google Scholar 

  90. Kimura F, Baughman RW (1997) Distinct muscarinic receptor subtypes suppress excitatory and inhibitory synaptic responses in cortical neurons. J Neurophysiol 77:709–716

    CAS  PubMed  Google Scholar 

  91. Kimura F, Fukuda M, Tsumoto T (1999) Acetylcholine suppresses the spread of excitation in the visual cortex revealed by optical recording: possible differential effect depending on the source of input. Eur J Neurosci 11:3597–3609

    Article  CAS  PubMed  Google Scholar 

  92. Kish SJ, El-Awar M, Schut L, Leach L, Oscar-Berman M, Freedman M (1988) Cognitive deficits in olivopontocerebellar atrophy: implications for the cholinergic hypothesis of Alzheimer's dementia. Ann Neurol 24:200–206

    Google Scholar 

  93. Klink R, de Kerchove d'Exaerde A, Zoli M, Changeux JP (2001) Molecular and physiological diversity of nicotinic acetylcholine receptors in the midbrain dopaminergic nuclei. J Neurosci 21:1452–1463

    CAS  PubMed  Google Scholar 

  94. Krnjevic K, Pumain R, Renaud L (1971) The mechanism of excitation by acetylcholine in the cerebral cortex. J Physiol (Lond) 215:247–268

    Google Scholar 

  95. Kubo T, Fukuda K, Mikami A, Maeda A, Takahashi H, Mishina M, Haga T, Haga K, Ichiyama A, Kangawa K (1986) Cloning, sequencing and expression of complementary DNA encoding the muscarinic acetylcholine receptor. Nature 323:411–416

    Google Scholar 

  96. Kubo T, Maeda A, Sugimoto K, Akiba I, Mikami A, Takahashi H, Haga T, Haga K, Ichiyama A, Kangawa K (1986) Primary structure of porcine cardiac muscarinic acetylcholine receptor deduced from the cDNA sequence. FEBS Lett 209:367–372

    Article  CAS  PubMed  Google Scholar 

  97. Kuhar M, Yamamura HI (1976) Localization of cholinergic muscarinic receptors in rat brain by light microscopic radioautography. Brain Res 110:229–243

    CAS  PubMed  Google Scholar 

  98. Lehmann J, Nagy JI, Atmadia S, Fibiger HC (1980) The nucleus basalis magnocellularis: the origin of a cholinergic projection to the neocortex of the rat. Neuroscience 5:1161–1174

    Google Scholar 

  99. Lena C, Changeux JP (1993) Allosteric modulations of the nicotinic acetylcholine receptor. Trends Neurosci 16:181–186

    CAS  PubMed  Google Scholar 

  100. Lena C, Changeux JP, Mulle C (1993) Evidence for "preterminal" nicotinic receptors on GABAergic axons in the rat interpeduncular nucleus. J Neurosci 13:2680–2688

    CAS  PubMed  Google Scholar 

  101. Le Novere N, Zoli M, Changeux JP (1996) Neuronal nicotinic receptor alpha 6 subunit mRNA is selectively concentrated in catecholaminergic nuclei of the rat brain. Eur J Neurosci 8:2428–2439

    PubMed  Google Scholar 

  102. Levey AI, Kitt CA, Simonds WF, Price DL, Brann MR (1991) Identification and localization of muscarinic acetylcholine receptor proteins in brain with subtype-specific antibodies. J Neurosci 11:3218–3226

    CAS  PubMed  Google Scholar 

  103. Levey AI, Wainer BH, Rye DB, Mufson EJ, Mesulam MM (1984) Choline acetyltransferase-immunoreactive neurons intrinsic to rodent cortex and distinction from acetylcholinesterase-positive neurons. Neuroscience 13:341–353

    CAS  PubMed  Google Scholar 

  104. Lindström J (1997) Nicotinic acetylcholine receptors in health and desease. Mol Neurobiol 15:193–222

    Google Scholar 

  105. Liu C, Nordberg A, Zhang X (1996) Differential co-expression of nicotinic acetylcholine receptor alpha 4 and beta 2 subunit genes in various regions of rat brain. Neuroreport 7:1645–1649

    CAS  PubMed  Google Scholar 

  106. Liu JK, Kato T (1994) Effects of physostigmine on relative acetylcholine output induced by systemic treatment with scopolamine in an in vivo microdialyse of rat frontal cortex. Neurochem Int 24:589–596

    CAS  PubMed  Google Scholar 

  107. Lopez MG, Fonteriz RI, Gandia L, de la Fuente M, Villarroya M, Garcia-Sancho J, Garcia AG (1993) The nicotinic acetylcholine receptor of the bovine chromaffin cell, a new target for dihydropyridines. Eur J Pharmacol 247:199–207

    CAS  PubMed  Google Scholar 

  108. Luetje CW, Patrick J (1991) Both alpha- and beta-subunits contribute to the agonist sensitivity of neuronal nicotinic acetylcholine receptors. J Neurosci 11:837–845

    CAS  PubMed  Google Scholar 

  109. Luetje CW, Wada K, Rogers S, Abramson SN, Tsuji K, Heinemann S, Patrick J (1990) Neurotoxins distinguish between different neuronal nicotinic acetylcholine receptor subunit combinations. J Neurochem 55:632–640

    CAS  PubMed  Google Scholar 

  110. Luiten PG, Gaykema RP, Traber J, Spencer DG Jr (1987) Cortical projection patterns of magnocellular basal nucleus subdivisions as revealed by anterogradely transported Phaseolus vulgaris leucoagglutinin. Brain Res 413:229–250

    CAS  PubMed  Google Scholar 

  111. Luiten PG, Spencer DG Jr, Traber J, Gaykema RP (1985) The pattern of cortical projections from the intermediate parts of the magnocellular nucleus basalis in the rat demonstrated by tracing with Phaseolus vulgaris-leucoagglutinin. Neurosci Lett 57:137–142

    CAS  PubMed  Google Scholar 

  112. Lukas RJ, Changeux JP, Le Novere N, Albuquerque EX, Balfour DJ, Berg DK, Bertrand D, Chiappinelli VA, Clarke PB, Collins AC, Dani JA, Grady SR, Kellar KJ, Lindstrom JM, Marks MJ, Quik M, Taylor PW, Wonnacott S (1999) International Union of Pharmacology. XX. Current status of the nomenclature for nicotinic acetylcholine receptors and their subunits. Pharmacol Rev 51:397–401

    CAS  PubMed  Google Scholar 

  113. Lysakowski A, Wainer BH, Bruce G, Hersh LB (1989) An atlas of the regional and laminar distribution of choline acetyltransferase immunoreactivity in rat cerebral cortex. Neuroscience 28:291–336

    Google Scholar 

  114. Madison DV, Lancaster B, Nicoll RA (1987) Voltage clamp analysis of cholinergic action in the hippocampus. J Neurosci 7(3):733–741

    CAS  PubMed  Google Scholar 

  115. Maelicke A, Schrattenholz A, Samochocki M, Radina M, Albuquerque EX (2000) Allosterically potentiating ligands of nicotinic receptors as a treatment strategy for Alzheimer's disease. Behav Brain Res 113:199–206

    Article  PubMed  Google Scholar 

  116. Magnani M, Mantovani P, Pepeu G (1984) Effect of cholecystokinin octapeptide and ceruletide on release of acetylcholine from cerebral cortex of the rat in vivo. Neuropharmacology 11:1305–1309

    Article  Google Scholar 

  117. Mash DC, Potter LT (1986) Autoradiographic localization of M1 and M2 muscarine receptors in the rat brain. Neuroscience 19:551–564

    CAS  PubMed  Google Scholar 

  118. Materi LM, Semba K (2001) Inhibition of synaptically evoked cortical acetylcholine release by intracortical glutamate: involvement of GABAergic neurons. Eur J Neurosci 14:38–46

    Article  CAS  PubMed  Google Scholar 

  119. McCormick DA (1992) Cellular mechanisms underlying cholinergic and noradrenergic modulation of neuronal firing mode in the cat and guinea pig dorsal lateral geniculate nucleus. J Neurosci 12:278–289

    CAS  PubMed  Google Scholar 

  120. McCormick DA, Prince DA (1986) Mechanisms of action of acetylcholine in the guinea-pig cerebral cortex in vitro. J Physiol (Lond) 375:169–194

    Google Scholar 

  121. McGehee DS (2002) Nicotinic receptors and hippocampal synaptic plasticity …it's all in the timing. Trends Neurosci 25:171–172

    Article  CAS  PubMed  Google Scholar 

  122. McGehee DS, Role LW (1996) Presynaptic ionotropic receptors. Curr Opin Neurobiol 6:342–349

    Google Scholar 

  123. Mechawar N, Cozzari C, Descarries L (2000) Cholinergic innervation in adult rat cerebral cortex: a quantitative immunocytochemical description. J Comp Neurol 428:305–318

    Article  CAS  PubMed  Google Scholar 

  124. Mesulam MM, Geula C (1988) Nucleus basalis (Ch4) and cortical cholinergic innervation in the human brain: observations based on the distribution of acetylcholinesterase and choline acetyltransferase. J Comp Neurol 275:216–240

    Google Scholar 

  125. Mesulam MM, Hersh LB, Mash DC, Geula C (1992) Differential cholinergic innervation within functional subdivisions of the human cerebral cortex: a choline acetyltransferase study. J Comp Neurol 318:316–328

    CAS  PubMed  Google Scholar 

  126. Mesulam MM, Mufson EJ, Wainer BH, Levey AI (1983) Central cholinergic pathways in the rat: an overview based on an alternative nomenclature (Ch1-Ch6). Neuroscience 10:1185–1201

    Google Scholar 

  127. Mesulam MM, Volicer L, Marquis JK, Mufson EJ, Green RC (1986) Systematic regional differences in the cholinergic innervation of the primate cerebral cortex: distribution of enzyme activities and some behavioral implications. Ann Neurol 19:144–151

    Google Scholar 

  128. Metherate R, Ashe JH (1993) Nucleus basalis stimulation facilitates thalamocortical synaptic transmission in the rat auditory cortex. Synapse 14:132–143

    CAS  PubMed  Google Scholar 

  129. Metherate R, Ashe JH (1995) Synaptic interactions involving acetylcholine, glutamate, and GABA in rat auditory cortex. Exp Brain Res 107:59–72

    CAS  PubMed  Google Scholar 

  130. Metherate R, Cox CL, Ashe JH (1992) Cellular bases of neocortical activation: modulation of neural oscillations by the nucleus basalis and endogenous acetylcholine. J Neurosci 12:4701–4711

    CAS  PubMed  Google Scholar 

  131. Miranda MI, Bermudez-Rattoni F (1999) Reversible inactivation of the nucleus basalis magnocellularis induces disruption of cortical acetylcholine release and acquisition, but not retrieval, of aversive memories. Proc Natl Acad Sci USA 96:6478–6482

    Article  CAS  PubMed  Google Scholar 

  132. Mochida S, Kobayashi H (1988) A novel muscarinic receptor antagonist AF-DX 116 differentially blocks slow inhibitory and slow excitatory postsynaptic potentials in the rabbit sympathetic ganglia. Life Sci 22(42):2195–2201

    Article  Google Scholar 

  133. Mogg AJ, Whiteaker P, McIntosh JM, Marks M, Collins AC, Wonnacott S (2002) Methyllycaconitine is a potent antagonist of alpha-conotoxin-MII- sensitive presynaptic nicotinic acetylcholine receptors in rat striatum. J Pharmacol Exp Ther 302:197–204

    Article  CAS  PubMed  Google Scholar 

  134. Moore H, Sarter M, Bruno JP (1995) Bidirectional modulation of cortical acetylcholine efflux by infusion of benzodiazepine receptor ligands into the basal forebrain. Neurosci Lett 189:31–34

    CAS  PubMed  Google Scholar 

  135. Mrzljak L, Levey AI, Belcher S, Goldman-Rakic PS (1998) Localization of the m2 muscarinic acetylcholine receptor protein and mRNA in cortical neurons of the normal and cholinergically deafferented rhesus monkey. J Comp Neurol 390(1):112–132

    Article  CAS  PubMed  Google Scholar 

  136. Mrzljak L, Levey AI, Goldman-Rakic PS (1993) Association of m1 and m2 muscarinic receptor proteins with asymmetric synapses in the primate cerebral cortex: morphological evidence for cholinergic modulation of excitatory neurotransmission. Proc Natl Acad Sci USA 90(11):5194–5198

    CAS  PubMed  Google Scholar 

  137. Mulle C, Choquet D, Korn H, Changeux JP (1992) Calcium influx through nicotinic receptor in rat central neurons: its relevance to cellular regulation. Neuron 8(1):135–143

    CAS  PubMed  Google Scholar 

  138. Mulle C, Lena C, Changeux JP (1992) Potentiation of nicotinic receptor response by external calcium in rat central neurons. Neuron 8:937–945

    CAS  PubMed  Google Scholar 

  139. Murakoshi T (1995) Cholinergic modulation of synaptic transmission in the rat visual cortex in vitro. Vision Res 35:25–35

    Article  CAS  PubMed  Google Scholar 

  140. Nakano I, Hirano A (1983) Neuron loss in the nucleus basalis of Meynert in parkinsonism-dementia complex of Guam. Ann Neurol 13:87–91

    Google Scholar 

  141. Nakayama H, Shioda S, Okuda H, Nakashima T, Nakai Y (1995) Immunocytochemical localization of nicotinic acetylcholine receptor in rat cerebral cortex. Brain Res Mol Brain Res 32:321–328

    Article  CAS  PubMed  Google Scholar 

  142. Nasman J, Jolkkonen M, Ammoun S, Karlsson E, Akerman KE (2000) Recombinant expression of a selective blocker of M(1) muscarinic receptors. Biochem Biophys Res Commun 271:435–439

    Article  CAS  PubMed  Google Scholar 

  143. Nathanson NM (2000) A multiplicity of muscarinic mechanisms: enough signaling pathways to take your breath away. Proc Natl Acad Sci USA 97:6245–6247

    Article  CAS  PubMed  Google Scholar 

  144. Nef P, Oneyser C, Alliod C, Couturier S, Ballivet M (1988) Genes expressed in the brain define three distinct neuronal nicotinic acetylcholine receptors. EMBO J 7:595–601

    CAS  PubMed  Google Scholar 

  145. Newman MB, Nazian SJ, Sanberg PR, Diamond DM, Shytle RD (2001) Corticosterone-attenuating and anxiolytic properties of mecamylamine in the rat. Prog Neuropsychopharmacol Biol Psychiatr 25(3):609–620

    CAS  Google Scholar 

  146. O'Dell TJ, Christensen BN (1988) Mecamylamine is a selective non-competitive antagonist of N-methyl-D-aspartate and aspartate-induced currents in horizontal cells dissociated from the catfish retina. Neurosci Lett 94:93–98

    CAS  PubMed  Google Scholar 

  147. Parnavelas JG, Kelly W, Franke E, Eckenstein F (1986) Cholinergic neurons and fibres in the rat visual cortex. J Neurocytol 15:329–336

    CAS  PubMed  Google Scholar 

  148. Paterson D, Nordberg A (2000) Neuronal nicotinic receptors in the human brain. Prog Neurobiol 61:75–111

    CAS  PubMed  Google Scholar 

  149. Patil MM, Hasselmo ME (1999) Modulation of inhibitory synaptic potentials in the pyriform cortex. J Neurophysiol 81:2103–2118

    CAS  PubMed  Google Scholar 

  150. Pepeu G, Blandina P (1998) The acetylcholine, GABA, glutamate triangle in the rat forebrain. J Physiol (Paris) 92:351–355

    Google Scholar 

  151. Pereira EF, Reinhardt-Maelicke S, Schrattenholz A, Maelicke A, Albuquerque EX (1993) Identification and functional characterization of a new agonist site on nicotinic acetylcholine receptors of cultured hippocampal neurons. J Pharmacol Exp Ther 265:1474–1491

    CAS  PubMed  Google Scholar 

  152. Pirch JH, Turco K, Rucker HK (1992) A role for acetylcholine in conditioning-related responses of rat frontal cortex neurons: microiontophoretic evidence. Brain Res 586:19–26

    CAS  PubMed  Google Scholar 

  153. Porter AC, Bymaster FP, DeLapp NW, Yamada M, Wess J, Hamilton SE, Nathanson NM, Felder CC (2002) M1 muscarinic receptor signaling in mouse hippocampus and cortex. Brain Res 944:82–89

    Article  CAS  PubMed  Google Scholar 

  154. Porter JT, Cauli B, Tsuzuki K, Lambolez B, Rossier J, Audinat E (1999) Selective excitation of subtypes of neocortical interneurons by nicotinic receptors. J Neurosci 19:5228–5235

    CAS  PubMed  Google Scholar 

  155. Pugh PC, Berg DK (1994) Neuronal acetylcholine receptors that bind alpha-bungarotoxin mediate neurite retraction in a calcium-dependent manner. J Neurosci 14:889–896

    Google Scholar 

  156. Radcliffe KA, Fisher JL, Gray R, Dani JA (1999) Nicotinic modulation of glutamate and GABA synaptic transmission of hippocampal neurons. Ann N Y Acad Sci 868:591–610

    CAS  PubMed  Google Scholar 

  157. Rasmusson DD, Dykes RW (1988) Long-term enhancement of evoked potentials in cat somatosensoriel cortex by co-activation of the basal forebrain and cutaneous receptors. Exp Brain Res 70:276–286

    CAS  PubMed  Google Scholar 

  158. Reever CM, Ferrari-DiLeo G, Flynn DD (1997) The M5 (m5) receptor subtype: fact or fiction? Life Sci 60:1105–1112

    Article  CAS  PubMed  Google Scholar 

  159. Riker WF, Wescoe W (1951) The pharmacology of flaxedil with observations on certain analogues. Ann NY Acad Sci 54:373–392

    CAS  Google Scholar 

  160. Robertson RT, Gallardo KA, Claytor KJ, Ha DH, Ku KH, Yu BP, Lauterborn JC, Wiley RG, Yu J, Gall CM, Leslie FM (1998) Neonatal treatment with 192 IgG-saporin produces long-term forebrain cholinergic deficits and reduces dendritic branching and spine density of neocortical pyramidal neurons. Cereb Cortex 8:142–155

    Article  CAS  PubMed  Google Scholar 

  161. Roerig B, Nelson DA, Katz L (1997) Fast synaptic signaling by nicotinic acetylcholine and serotonin 5-HT3 receptors in developing visual cortex. J Neurosci 17:8353–8362

    CAS  PubMed  Google Scholar 

  162. Role LW, Berg DK (1996) Nicotinic receptors in the development and modulation of CNS synapses. Neuron 16:1077–1085

    CAS  PubMed  Google Scholar 

  163. Rotter A, Birdsall NJ, Burgen AS, Field PM, Hulme EC, Raisman G (1979) Muscarinic receptors in the central nervous system of the rat. I. Technique for autoradiographic localization of the binding of [3H]propylbenzilylcholine mustard and its distribution in the forebrain. Brain Res 180(2):141–165

    CAS  PubMed  Google Scholar 

  164. Rouse ST, Thomas TM, Levey AI (1997) Muscarinic acetylcholine receptor subtype, m2: diverse functional implications of differential synaptic localization. Life Sci 60:1031–1038

    Article  CAS  PubMed  Google Scholar 

  165. Ruberg M, Javoy-Agid F, Hirsch E, Scatton B, Lheureux R, Hauw J-J, Duyckaerts C, Gray F, Morel-Maroger A, Rascol A, Serdaru M, Agid Y (1985) Dopaminergic and cholinergic lesions in progressive supranuclear palsy. Ann Neurol 18:523–529

    CAS  PubMed  Google Scholar 

  166. Sargent PB (1993) The diversity of neuronal nicotinic acetylcholine receptors. Annu Rev Neurosci 16:403–443

    CAS  PubMed  Google Scholar 

  167. Sarter M, Bruno JP (1997) Cognitive functions of cortical acetylcholine: toward a unifying hypothesis. Brain Res Rev 23:28–46

    CAS  PubMed  Google Scholar 

  168. Schoepfer R, Conroy WG, Whiting P, Gore M, Lindstrom J (1990) Brain alpha-bungarotoxin binding protein cDNAs and MAbs reveal subtypes of this branch of the ligand-gated ion channel gene superfamily. Neuron 5:35–48

    CAS  PubMed  Google Scholar 

  169. Schoepfer R, Whiting P, Esch F, Blacher R, Shimasaki S, Lindstrom J (1988) cDNA clones coding for the structural subunit of a chicken brain nicotinic acetylcholine receptor. Neuron 1:241–248

    CAS  PubMed  Google Scholar 

  170. Schrattenholz A, Pereira EF, Roth U, Weber KH, Albuquerque EX, Maelicke A (1996) Agonist responses of neuronal nicotinic acetylcholine receptors are potentiated by a novel class of allosterically acting ligands. Mol Pharmacol 49:1–6

    CAS  PubMed  Google Scholar 

  171. Segal M (1989) Presynaptic cholinergic inhibition in hippocampal cultures. Synapse 4:305–312

    CAS  PubMed  Google Scholar 

  172. Seguela P, Wadiche J, Dineley-Miller K, Dani JA, Patrick JW (1993) Molecular cloning, functional properties, and distribution of rat brain alpha 7: a nicotinic cation channel highly permeable to calcium. J Neurosci 13:596–604

    PubMed  Google Scholar 

  173. Sillito AM, Kemp JA (1983) Cholinergic modulation of the functional organization of the cat visual cortex. Brain Res 289:143–155

    CAS  PubMed  Google Scholar 

  174. Sillito AM, Murphy PC (1987) The cholinergic modulation of cortical function. In: Jones EG, Peters A (eds) Cerebral cortex, volume 6. Plenum, New York, pp 161–185

  175. Steinlein OK (1998) New functions for nicotinic acetylcholine receptors ? Behav Brain Res 95:31–35

    Article  CAS  PubMed  Google Scholar 

  176. Svensson AL, Nordberg A (1996) Tacrine interacts with an allosteric activator site on alpha4beta2 nAChRs in M10 cells. Neuroreport 7:2201–2205

    CAS  PubMed  Google Scholar 

  177. Tagliavini F, Pilleri G, Bouras C, Constantinidis J (1984) The basal nucleus of Meynert in patients with progressive supranuclear palsy. Neurosci Lett 44:37–42

    CAS  PubMed  Google Scholar 

  178. Tellez S, Colpaert F, Marien M (1997) Acetylcholine release in the rat prefrontal cortex in vivo, modulation by α2-adrenoceptor agonists and antagonists. J Neurochem 68:778–785

    CAS  PubMed  Google Scholar 

  179. Torrao AS, Britto LR (2002) Neurotransmitter regulation of neural development: acetylcholine and nicotinic receptors. An Acad Bras Cienc 74:453–461

    CAS  PubMed  Google Scholar 

  180. Uhl GR, McKinney M, Hedreen JC, White CL III, Coyle JT, Whitehouse PJ, Price DL (1982) Dementia pugilistica: loss of basal forebrain cholinergic neurons and cortical cholinergic markers (Abstract). Ann Neurol 12:99

    Google Scholar 

  181. Van der Zee EA, Luiten PG (1999) Muscarinic acetylcholine receptors in the hippocampus, neocortex and amygdala: a review of immunocytochemical localization in relation to learning and memory. Prog Neurobiol 58:409–471

    PubMed  Google Scholar 

  182. Van der Zee EA, Streefland C, Strosberg AD, Schröder H, Luiten PGM (1992) Visualization of cholinoceptive neurons in the rat neocortex: colocalization of muscarinic and nicotinic acetylcholine receptors. Mol Brain Res 14:326–336

    PubMed  Google Scholar 

  183. Vernino S, Amador M, Luetje CW, Patrick J, Dani JA (1992) Calcium modulation and high calcium permeability of neuronal nicotinic acetylcholine receptors. Neuron 8:127–134

    CAS  PubMed  Google Scholar 

  184. Vernino S, Rogers M, Radcliffe KA, Dani JA (1994) Quantitative measurement of calcium flux through muscle and neuronal nicotinic acetylcholine receptors. J Neurosci 14(9):5514–5524

    CAS  PubMed  Google Scholar 

  185. Vidal C, Changeux JP (1993) Nicotinic and muscarinic modulations of excitatory synaptic transmission in the rat prefrontal cortex in vitro. Neuroscience 56:23–32

    CAS  PubMed  Google Scholar 

  186. Vilaro MT, Palacios JM, Mengod G (1990) Localization of m5 muscarinic receptor mRNA in rat brain examined by in situ hybridization histochemistry. Neurosci Lett 114:154–159

    CAS  PubMed  Google Scholar 

  187. Vogt BA (1991) The role of layer I in cortical function. In : Peters A (ed) Cerebral cortex, volume 9.Plenum, New York, pp 49–80.

  188. Voytko ML, Olton DS, Richardson RT, Gorman LK, Tobin JR, Price DL (1994) Basal forebrain lesions in monkeys disrupt attention but not learning and memory. J Neurosci 14:167–186

    Google Scholar 

  189. Wada K, Ballivet M, Boulter J, Connolly J, Wada E, Deneris ES, Swanson LW, Heinemann S, Patrick J (1988) Functional expression of a new pharmacological subtype of brain nicotinic acetylcholine receptor. Science 240:330–334

    CAS  PubMed  Google Scholar 

  190. Wada E, McKinnon D, Heinemann S, Patrick J, Swanson LW (1990) The distribution of mRNA encoded by a new member of the neuronal nicotinic acetylcholine receptor gene family (alpha 5) in the rat central nervous system. Brain Res 526:45–53

    CAS  PubMed  Google Scholar 

  191. Wada E, Wada K, Boulter J, Deneris E, Heinemann S, Patrick J, Swanson LW (1989) Distribution of alpha 2, alpha 3, alpha 4, and beta 2 neuronal nicotinic receptor subunit mRNAs in the central nervous system: a hybridization histochemical study in the rat. J Comp Neurol 284:314–335

    CAS  PubMed  Google Scholar 

  192. Wamsley JK, Lewis MS, Young WS 3rd, Kuhar MJ (1981) Autoradiographic localization of muscarinic cholinergic receptors in rat brainstem. J Neurosci 1:176–191

    CAS  PubMed  Google Scholar 

  193. Weiner DM, Levey AI, Brann MR (1990) Expression of muscarinic acetylcholine and dopamine receptor mRNAs in rat basal ganglia. Proc Natl Acad Sci USA 87:7050–7054

    CAS  PubMed  Google Scholar 

  194. Wenk H, Bigl V, Meyer U (1980) Cholinergic projections from magnocellular nuclei of the basal forebrain to cortical areas in rats. Brain Res 2:295–316

    CAS  PubMed  Google Scholar 

  195. Wess J, Blin N, Mutschler E, Bluml K (1995) Muscarinic acetylcholine receptors: structural basis of ligand binding and G protein coupling. Life Sci 56:915–922

    Article  CAS  PubMed  Google Scholar 

  196. Wolfe BB, Yasuda RP (1995) Development of selective antisera for muscarinic cholinergic receptor subtypes. Ann N Y Acad Sci 757:186–193

    CAS  PubMed  Google Scholar 

  197. Wonnacott S (1997) Presynaptic nicotinic ACh receptor. Trends Neurosci 20:92–98

    CAS  PubMed  Google Scholar 

  198. Woody CD, Gruen E (1987) Acetylcholine reduces net outward currents measured in vivo with single electrode voltage clamp techniques in neurons of the motor cortex of cats. Brain Res 424:193–198

    CAS  PubMed  Google Scholar 

  199. Woolf NJ (1991) Cholinergic systems in mammalian brain and spinal cord. Prog Neurobiol 37:475–524

    CAS  PubMed  Google Scholar 

  200. Xiang Z, Huguenard JR, Prince DA (1998) Cholinergic switching within neocortical inhibitory networks. Science 281:985–988

    CAS  PubMed  Google Scholar 

  201. Yates CM, Simpson J, Maloney AFJ, Gordon A, Reid AH (1980) Alzheimer-like cholinergic deficiency in Down syndrome. Lancet 2:979

    CAS  Google Scholar 

  202. Zhang L, Weiner JL, Carlen PL (1992) Muscarinic potentiation of IK in hippocampal neurons: electrophysiological characterization of the signal transduction pathway. J Neurosci 12(11):4510–4520

    CAS  PubMed  Google Scholar 

  203. Zhang W, Basile AS, Gomeza J, Volpicelli LA, Levey AI, Wess J (2002) Characterization of central inhibitory muscarinic autoreceptors by the use of muscarinic acetylcholine receptor knock-out mice. J Neurosci 22:1709–1717

    CAS  PubMed  Google Scholar 

  204. Zilles K, Schroder H, Schroder U, Horvath E, Werner L, Luiten PG, Maelicke A, Strosberg AD (1989) Distribution of cholinergic receptors in the rat and human neocortex. EXS 57:212–228

    CAS  PubMed  Google Scholar 

  205. Zoli M, Le Novere N, Hill JA Jr, Changeux JP (1995) Developmental regulation of nicotinic ACh receptor subunit mRNAs in the rat central and peripheral nervous systems. J Neurosci 15:1912–1939

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. S. Wonnacott and Dr. I. Bermudez for critical reading of the manuscript. E.L.M. was supported by grants from the Délégation Générale pour l'Armement (France), the Fondation pour la Recherche Médicale (France) and the Institut Lilly (France). The work was supported by a grant from the Conseil Général de l'Essonne (France).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Lucas-Meunier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lucas-Meunier, E., Fossier, P., Baux, G. et al. Cholinergic modulation of the cortical neuronal network. Pflugers Arch - Eur J Physiol 446, 17–29 (2003). https://doi.org/10.1007/s00424-002-0999-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-002-0999-2

Keywords

Navigation