Skip to main content
Log in

"In vivo" monitoring of neuronal network activity in zebrafish by two-photon Ca2+ imaging

  • Instruments and Techniques
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

The zebrafish larva is a powerful model for the analysis of behaviour and the underlying neuronal network activity during early stages of development. Here we employ a new approach of "in vivo" Ca2+ imaging in this preparation. We demonstrate that bolus injection of membrane-permeable Ca2+ indicator dyes into the spinal cord of zebrafish larvae results in rapid staining of essentially the entire spinal cord. Using two-photon imaging, we could monitor Ca2+ signals simultaneously from a large population of spinal neurons with single-cell resolution. To test the method, Ca2+ transients were produced by iontophoretic application of glutamate and, as observed for the first time in a living preparation, of GABA or glycine. Glycine-evoked Ca2+ transients were blocked by the application of strychnine. Sensory stimuli that trigger escape reflexes in mobile zebrafish evoked Ca2+ transients in distinct neurons of the spinal network. Moreover, long-term recordings revealed spontaneous Ca2+ transients in individual spinal neurons. Frequently, this activity occurred synchronously among many neurons in the network. In conclusion, the new approach permits a reliable analysis with single-cell resolution of the functional organisation of developing neuronal networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1A–E.
Fig. 2A–D.
Fig. 3A, B.
Fig. 4A–D.
Fig. 5A–C.
Fig. 6A–D.

Similar content being viewed by others

References

  1. Ali DW, Drapeau P, Legendre P (2000) Development of spontaneous glycinergic currents in the Mauthner neuron of the zebrafish embryo. J Neurophysiol 84:1726–1736

    CAS  PubMed  Google Scholar 

  2. Ashworth R, Bolsover SR (2002) Spontaneous activity-independent intracellular calcium signals in the developing spinal cord of the zebrafish embryo. Brain Res Dev Brain Res 139:131–137

    Article  CAS  PubMed  Google Scholar 

  3. Ashworth R, Zimprich F, Bolsover SR (2001) Buffering intracellular calcium disrupts motoneuron development in intact zebrafish embryos. Brain Res Dev Brain Res 129:169–179

    Article  CAS  PubMed  Google Scholar 

  4. Ben-Ari Y (2002) Excitatory actions of GABA during development: the nature of the nurture. Nat Rev Neurosci 3:728–739

    Article  CAS  PubMed  Google Scholar 

  5. Budick SA, O'Malley DM (2000) Locomotor repertoire of the larval zebrafish: swimming, turning and prey capture. J Exp Biol 203:2565–2579

    PubMed  Google Scholar 

  6. Buss RR, Drapeau P (2001) Synaptic drive to motoneurons during fictive swimming in the developing zebrafish. J Neurophysiol 86:197–210

    CAS  PubMed  Google Scholar 

  7. Buss R, Ali D, Drapeau P (1999) Properties of synaptic currents and fictive motor behaviors in neurons of locomotor regions of the developing zebrafish (abstract). Soc Neurosci Abstr 25:467.3

    Google Scholar 

  8. Cox KJ, Fetcho JR (1996) Labeling blastomeres with a calcium indicator: a non-invasive method of visualizing neuronal activity in zebrafish. J Neurosci Methods 68:185–191

    CAS  PubMed  Google Scholar 

  9. Creton R, Speksnijder JE, Jaffe LF (1998) Patterns of free calcium in zebrafish embryos. J Cell Sci 111:1613–1622

    CAS  PubMed  Google Scholar 

  10. Drapeau P, Ali DW, Buss RR, Saint-Amant L (1999) In vivo recording from identifiable neurons of the locomotor network in the developing zebrafish. J Neurosci Methods 88:1–13

    Article  CAS  PubMed  Google Scholar 

  11. Feller MB (1999) Spontaneous correlated activity in developing neural circuits. Neuron 22:653–656

    CAS  PubMed  Google Scholar 

  12. Fetcho JR, O'Malley DM (1995) Visualization of active neural circuitry in the spinal cord of intact zebrafish. J Neurophysiol 73:399–406

    CAS  PubMed  Google Scholar 

  13. Gahtan E, Sankrithi N, Campos JB, O'Malley DM (2002) Evidence for a widespread brain stem escape network in larval zebrafish. J Neurophysiol 87:608–614

    PubMed  Google Scholar 

  14. Garaschuk O, Hanse E, Konnerth A (1998) Developmental profile and synaptic origin of early network oscillations in the CA1 region of rat neonatal hippocampus. J Physiol (Lond) 507:219–236

    Google Scholar 

  15. Garaschuk O, Linn J, Eilers J, Konnerth A (2000) Large-scale oscillatory calcium waves in the immature cortex. Nat Neurosci 3:452–459

    Article  CAS  PubMed  Google Scholar 

  16. Ghosh A, Greenberg ME (1995) Calcium signaling in neurons: molecular mechanisms and cellular consequences. Science 268:239–247

    CAS  PubMed  Google Scholar 

  17. Gleason MR, Higashijima S, Dallman J, Liu K, Mandel G, Fetcho JR (2003) Translocation of CaM kinase II to synaptic sites in vivo. Nat Neurosci 6:217–218

    Article  CAS  PubMed  Google Scholar 

  18. Gomez TM, Spitzer NC (1999) In vivo regulation of axon extension and pathfinding by growth-cone calcium transients. Nature 397:350–355

    Article  CAS  PubMed  Google Scholar 

  19. Hatta K, Ankri N, Faber DS, Korn H (2001) Slow inhibitory potentials in the teleost Mauthner cell. Neuroscience 103:561–579

    Article  CAS  PubMed  Google Scholar 

  20. Helmchen F, Waters J (2002) Ca2+ imaging in the mammalian brain in vivo. Eur J Pharmacol 447:119–129

    Article  CAS  PubMed  Google Scholar 

  21. O'Donovan MJ, Ho S, Sholomenko G, Yee W (1993) Real-time imaging of neurons retrogradely and anterogradely labelled with calcium-sensitive dyes. J Neurosci Methods 46:91–106

    Article  CAS  PubMed  Google Scholar 

  22. O'Donovan M, Ho S, Yee W (1994) Calcium imaging of rhythmic network activity in the developing spinal cord of the chick embryo. J Neurosci 14:6354–6369

    CAS  PubMed  Google Scholar 

  23. O'Malley DM, Kao YH, Fetcho JR (1996) Imaging the functional organization of zebrafish hindbrain segments during escape behaviors. Neuron 17:1145–1155

    CAS  PubMed  Google Scholar 

  24. Regehr WG, Tank DW (1991) Selective fura-2 loading of presynaptic terminals and nerve cell processes by local perfusion in mammalian brain slice. J Neurosci Methods 37:111–119

    Article  CAS  PubMed  Google Scholar 

  25. Ritter DA, Bhatt DH, Fetcho JR (2001) In vivo imaging of zebrafish reveals differences in the spinal networks for escape and swimming movements. J Neurosci 21:8956–8965

    CAS  PubMed  Google Scholar 

  26. Saint-Amant L, Drapeau P (2000) Motoneuron activity patterns related to the earliest behavior of the zebrafish embryo. J Neurosci 20:3964–3972

    CAS  PubMed  Google Scholar 

  27. Schoenwolf GC (2001) Cutting, pasting and painting: experimental embryology and neural development. Nat Rev Neurosci 2:763–771

    Article  CAS  PubMed  Google Scholar 

  28. Segal M (2001) Rapid plasticity of dendritic spine: hints to possible functions? Prog Neurobiol 63:61–70

    Google Scholar 

  29. Smetters D, Majewska A, Yuste R (1999) Detecting action potentials in neuronal populations with calcium imaging. Methods 18:215–221

    CAS  PubMed  Google Scholar 

  30. Spitzer NC, Lautermilch NJ, Smith RD, Gomez TM (2000) Coding of neuronal differentiation by calcium transients. Bioessays 22:811–817

    Article  CAS  PubMed  Google Scholar 

  31. Stosiek C, Garaschuk O, Holthoff K, Konnerth A (2003) In vivo two-photon calcium imaging of neuronal networks. Proc Natl Acad Sci USA 100:7319–7324

    Article  CAS  PubMed  Google Scholar 

  32. Takahashi M, Narushima M, Oda Y (2002) In vivo imaging of functional inhibitory networks on the Mauthner cell of larval zebrafish. J Neurosci 22:3929–3938

    CAS  PubMed  Google Scholar 

  33. Westerfield M (1995) The zebrafish book: a guide for laboratory use of zebrafish (Brachydanio rerio). University of Oregon Press, Eugene

    Google Scholar 

  34. Wong RO, Chernjavsky A, Smith SJ, Shatz CJ (1995) Early functional neural networks in the developing retina. Nature 374:716–718

    CAS  PubMed  Google Scholar 

  35. Wu LG, Saggau P (1994) Adenosine inhibits evoked synaptic transmission primarily by reducing presynaptic calcium influx in area CA1 of hippocampus. Neuron 12:1139–1148

    CAS  PubMed  Google Scholar 

  36. Zhang LI, Poo MM (2001) Electrical activity and development of neural circuits. Nat Neurosci 4 (Suppl):1207–1214

    Article  CAS  Google Scholar 

  37. Zimprich F, Ashworth R, Bolsover S (1998) Real-time measurements of calcium dynamics in neurons developing in situ within zebrafish embryos. Pflugers Arch 436:489–493

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank O. Garaschuk and J. Davis for comments on the manuscript, R. Maul, S. Schickle, I. Schneider, for technical assistance, C. Gauthier for support on graphical design, L. Bailly-Cuif for providing zebrafish eggs and G. Laliberté and L. Brent for excellent animal care. This work was supported by an HFSP short-term fellowship to E.B. and by grants from the CIHR and NSERC of Canada to P.D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Konnerth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brustein, E., Marandi, N., Kovalchuk, Y. et al. "In vivo" monitoring of neuronal network activity in zebrafish by two-photon Ca2+ imaging. Pflugers Arch - Eur J Physiol 446, 766–773 (2003). https://doi.org/10.1007/s00424-003-1138-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-003-1138-4

Keywords

Navigation