Skip to main content
Log in

Reversal or reduction of glutamate and GABA transport in CNS pathology and therapy

  • Invited Review
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

A dysfunction of amino acid neurotransmitter transporters occurs in a number of central nervous system disorders, including stroke, epilepsy, cerebral palsy and amyotrophic lateral sclerosis. This dysfunction can comprise a reversal of transport direction, leading to the release of neurotransmitter into the extracellular space, or an alteration in transporter expression level. This review analyses the role of glutamate and GABA transporters in the pathogenesis and therapy of a number of acute and chronic neurological disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1a–d
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Agrawal SK, Fehlings MG (1997) Role of NMDA and non-NMDA ionotropic glutamate receptors in traumatic spinal cord axonal injury. J Neurosci 17:1055–1063

    CAS  PubMed  Google Scholar 

  2. Akbar MT, Torp R, Danbolt NC, Levy LM, Meldrum BS, Ottersen OP (1997) Expression of glial glutamate transporters GLT-1 and GLAST is unchanged in the hippocampus in fully kindled rats. Neuroscience 78:351–359

    Article  CAS  PubMed  Google Scholar 

  3. Allen NJ, Attwell D (2001) A chemokine-glutamate connection. Nat Neurosci 4:676–678

    Article  CAS  PubMed  Google Scholar 

  4. Allen NJ, Rossi DJ, Attwell D (2004) Sequential release of GABA by exocytosis and reversed uptake leads to neuronal swelling in simulated ischaemia of hippocampal slices. J Neurosci 24:3837–3849

    Article  CAS  PubMed  Google Scholar 

  5. Attwell D, Barbour B, Szatkowski M (1993) Nonvesicular release of neurotransmitter. Neuron 11:401–407

    Article  CAS  PubMed  Google Scholar 

  6. Back SA, Gan X, Li Y, Rosenberg PA, Volpe JJ (1998) Maturation-dependent vulnerability of oligodendrocytes to oxidative stress-induced death caused by glutathione depletion. J Neurosci 18:6241–6253

    CAS  PubMed  Google Scholar 

  7. Back SA, Luo NL, Borenstein NS, Levine JM, Volpe JJ, Kinney HC (2001) Late oligodendrocyte progenitors coincide with the developmental window of vulnerability for human perinatal white matter injury. J Neurosci 21:1302–1312

    CAS  PubMed  Google Scholar 

  8. Back SA, Han BH, Luo NL, Chricton CA, Xanthoudakis S, Tam J, Arvin KL, Holtzman DM (2002) Selective vulnerability of late oligodendrocyte progenitors to hypoxia-ischemia. J Neurosci 22:455–463

    CAS  PubMed  Google Scholar 

  9. Basso DM, Beattie MS, Bresnahan JC (1996) Graded histological and locomotor outcomes after spinal cord contusion using the NYU weight-drop device versus transection. Exp Neurol 139:244–256

    Google Scholar 

  10. Bendotti C, Tortarolo M, Suchak SK, Calvaresi N, Carvelli L, Bastone A, Rizzi M, Rattray M, Mennini T (2001) Transgenic SOD1 G93A mice develop reduced GLT-1 in spinal cord without alterations in cerebrospinal fluid glutamate levels. J Neurochem 79:737–746

    Article  CAS  PubMed  Google Scholar 

  11. Bezzi P, Domercq M, Brambilla L, Galli R, Schols D, De Clercq E, Vescovi A, Bagetta G, Kollias G, Meldolesi J, Volterra A (2001) CXCR4-activated astrocyte glutamate release via TNFalpha: amplification by microglia triggers neurotoxicity. Nat Neurosci 4:702–710

    Article  CAS  PubMed  Google Scholar 

  12. Borden LA, Murali Dhar TG, Smith KE, Weinshank RL, Branchek TA, Gluchowski C (1994) Tiagabine, SK&F 89976-A, CI-966, and NNC-711 are selective for the cloned GABA transporter GAT-1. Eur J Pharmacol 269:219–224

    Google Scholar 

  13. Dalby NO, Thomsen C, Fink-Jensen A, Lundbeck J, Sokilde B, Man CM, Sorensen PO, Meldrum B (1997) Anticonvulsant properties of two GABA uptake inhibitors NNC 05-2045 and NNC 05-2090, not acting preferentially on GAT-1. Epilepsy Res 28:51–61

    Article  CAS  PubMed  Google Scholar 

  14. Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65:1–105

    Article  CAS  PubMed  Google Scholar 

  15. Deng W, Rosenberg PA, Volpe JJ, Jensen FE (2003) Calcium-permeable AMPA/kainate receptors mediate toxicity and preconditioning by oxygen-glucose deprivation in oligodendrocyte precursors. Proc Natl Acad Sci U S A 100:6801–6806

    Google Scholar 

  16. Domercq M, Sanchez-Gomez MV, Areso P, Matute C (1999) Expression of glutamate transporters in rat optic nerve oligodendrocytes. Eur J Neurosci 11:2226–2236

    Article  CAS  PubMed  Google Scholar 

  17. During MJ, Ryder KM, Spencer DD (1995) Hippocampal GABA transporter function in temporal-lobe epilepsy. Nature 376:174–177

    Article  CAS  PubMed  Google Scholar 

  18. Erecinska M, Nelson D, Wilson DF, Silver IA (1984) Neurotransmitter amino acids in the CNS. I. Regional changes in amino acid levels in rat brain during ischemia and reperfusion. Brain Res 304:9–22

    Article  CAS  PubMed  Google Scholar 

  19. Fern R, Moller T (2000) Rapid ischemic cell death in immature oligodendrocytes: a fatal glutamate release feedback loop. J Neurosci 20:34–42

    CAS  PubMed  Google Scholar 

  20. Fine SM, Angel RA, Perry SW, Epstein LG, Rothstein JD, Dewhurst S, Gelbard HA (1996) Tumor necrosis factor alpha inhibits glutamate uptake by primary human astrocytes. Implications for pathogenesis of HIV-1 dementia. J Biol Chem 271:15303–15306

    Article  CAS  PubMed  Google Scholar 

  21. Flowers JM, Powell JF, Leigh PN, Andersen P, Shaw CE (2001) Intron 7 retention and exon 9 skipping EAAT2 mRNA variants are not associated with amyotrophic lateral sclerosis. Ann Neurol 49:643–649

    Google Scholar 

  22. Folbergrova J, Li PA, Uchino H, Smith ML, Siesjo BK (1997) Changes in the bioenergetic state of rat hippocampus during 2.5 min of ischemia, and prevention of cell damage by cyclosporin A in hyperglycemic subjects. Exp Brain Res 114:44–50

    CAS  PubMed  Google Scholar 

  23. Frahm C, Stief F, Zuschratter W, Draguhn A (2003) Unaltered control of extracellular GABA-concentration through GAT-1 in the hippocampus of rats after pilocarpine-induced status epilepticus. Epilepsy Res 52:243–252

    Article  CAS  PubMed  Google Scholar 

  24. Gaspary HL, Wang W, Richerson GB (1998) Carrier-mediated GABA release activates GABA receptors on hippocampal neurons. J Neurophysiol 80:270–281

    CAS  PubMed  Google Scholar 

  25. Gebhardt C, Korner R, Heinemann U (2002) Delayed anoxic depolarizations in hippocampal neurons of mice lacking the excitatory amino acid carrier 1. J Cereb Blood Flow Metab 22:569–575

    Article  CAS  PubMed  Google Scholar 

  26. Gottlieb M, Domercq M, Matute C (2000) Altered expression of the glutamate transporter EAAC1 in neurons and immature oligodendrocytes after transient forebrain ischemia. J Cereb Blood Flow Metab 20:678–687

    CAS  PubMed  Google Scholar 

  27. Green AR, Hainsworth AH, Jackson DM (2000) GABA potentiation: a logical pharmacological approach for the treatment of acute ischaemic stroke. Neuropharmacology 39:1483–1494

    Article  CAS  PubMed  Google Scholar 

  28. Guo H, Lai L, Butchbach ME, Lin CL (2002) Human glioma cells and undifferentiated primary astrocytes that express aberrant EAAT2 mRNA inhibit normal EAAT2 protein expression and prevent cell death. Mol Cell Neurosci 21:546–560

    Article  CAS  PubMed  Google Scholar 

  29. Gurney ME, Pu H, Chiu AY, Dal Canto MC, Polchow CY, Alexander DD, Caliendo J, Hentati A, Kwon YW, Deng HX, et al. (1994) Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. Science 264:1772–1775

    CAS  PubMed  Google Scholar 

  30. Hamann M, Rossi DJ, Marie H, Attwell D (2002) Knocking out the glial glutamate transporter GLT-1 reduces glutamate uptake but does not affect hippocampal glutamate dynamics in early simulated ischaemia. Eur J Neurosci 15:308–314

    Article  PubMed  Google Scholar 

  31. Hansen AJ (1985) Effect of anoxia on ion distribution in the brain. Physiol Rev 65:101–148

    CAS  PubMed  Google Scholar 

  32. Hermann GE, Rogers RC, Bresnahan JC, Beattie MS (2001) Tumor necrosis factor-alpha induces cFOS and strongly potentiates glutamate-mediated cell death in the rat spinal cord. Neurobiol Dis 8:590–599

    Article  CAS  PubMed  Google Scholar 

  33. Hertz L, Wu PH, Schousboe A (1978) Evidence for net uptake of GABA into mouse astrocytes in primary cultures--its sodium dependence and potassium independence. Neurochem Res 3:313–323

    CAS  PubMed  Google Scholar 

  34. Honig LS, Chambliss DD, Bigio EH, Carroll SL, Elliott JL (2000) Glutamate transporter EAAT2 splice variants occur not only in ALS, but also in AD and controls. Neurology 55:1082–1088

    Google Scholar 

  35. Kang TC, Hwang IK, Park SK, An SJ, Yoon DK, Moon SM, Lee YB, Sohn HS, Cho SS, Won MH (2001) Chronological changes of N-methyl-d-aspartate receptors and excitatory amino acid carrier 1 immunoreactivities in CA1 area and subiculum after transient forebrain ischemia. J Neurocytol 30:945–955

    Article  CAS  PubMed  Google Scholar 

  36. Kang TC, Kim HS, Seo MO, Park SK, Kwon HY, Kang JH, Won MH (2001) The changes in the expressions of gamma-aminobutyric acid transporters in the gerbil hippocampal complex following spontaneous seizure. Neurosci Lett 310:29–32

    Article  CAS  PubMed  Google Scholar 

  37. Kirino T (1982) Delayed neuronal death in the gerbil hippocampus following ischemia. Brain Res 239:57–69

    Article  CAS  PubMed  Google Scholar 

  38. Kohlhauser C, Mosgoller W, Hoger H, Lubec B (2000) Myelination deficits in brain of rats following perinatal asphyxia. Life Sci 67:2355–2368

    Google Scholar 

  39. Kondo K, Hashimoto H, Kitanaka J, Sawada M, Suzumura A, Marunouchi T, Baba A (1995) Expression of glutamate transporters in cultured glial cells. Neurosci Lett 188:140–142

    Article  CAS  PubMed  Google Scholar 

  40. Krishek BJ, Smart TG (2001) Proton sensitivity of rat cerebellar granule cell GABAA receptors: dependence on neuronal development. J Physiol (Lond) 530:219–233

    Google Scholar 

  41. Kugler P, Schmitt A (1999) Glutamate transporter EAAC1 is expressed in neurons and glial cells in the rat nervous system. Glia 27:129–142

    Article  CAS  PubMed  Google Scholar 

  42. Levy LM, Warr O, Attwell D (1998) Stoichiometry of the glial glutamate transporter GLT-1 expressed inducibly in a Chinese hamster ovary cell line selected for low endogenous Na+-dependent glutamate uptake. J Neurosci 18:9620–9628

    CAS  PubMed  Google Scholar 

  43. Li S, Stys PK (2000) Mechanisms of ionotropic glutamate receptor-mediated excitotoxicity in isolated spinal cord white matter. J Neurosci 20:1190–1198

    CAS  PubMed  Google Scholar 

  44. Li S, Tator CH (2000) Action of locally administered NMDA and AMPA/kainate receptor antagonists in spinal cord injury. Neurol Res 22:171–180

    CAS  PubMed  Google Scholar 

  45. Li S, Mealing GA, Morley P, Stys PK (1999) Novel injury mechanism in anoxia and trauma of spinal cord white matter: glutamate release via reverse Na+-dependent glutamate transport. J Neurosci 19: RC16

    CAS  PubMed  Google Scholar 

  46. Lin CL, Bristol LA, Jin L, Dykes-Hoberg M, Crawford T, Clawson L, Rothstein JD (1998) Aberrant RNA processing in a neurodegenerative disease: the cause for absent EAAT2, a glutamate transporter, in amyotrophic lateral sclerosis. Neuron 20:589–602

    Article  CAS  PubMed  Google Scholar 

  47. Liu D, Thangnipon W, McAdoo DJ (1991) Excitatory amino acids rise to toxic levels upon impact injury to the rat spinal cord. Brain Res 547:344–348

    Article  CAS  PubMed  Google Scholar 

  48. Loo DD, Eskandari S, Boorer KJ, Sarkar HK, Wright EM (2000) Role of Cl in electrogenic Na+-coupled cotransporters GAT1 and SGLT1. J Biol Chem 275:37414–37422

    Article  CAS  PubMed  Google Scholar 

  49. Madl JE, Burgesser K (1993) Adenosine triphosphate depletion reverses sodium-dependent, neuronal uptake of glutamate in rat hippocampal slices. J Neurosci 13:4429–4444

    CAS  PubMed  Google Scholar 

  50. Madl JE, Royer SM (2000) Glutamate dependence of GABA levels in neurons of hypoxic and hypoglycemic rat hippocampal slices. Neuroscience 96:657–664

    Article  CAS  PubMed  Google Scholar 

  51. Matute C (1998) Characteristics of acute and chronic kainate excitotoxic damage to the optic nerve. Proc Natl Acad Sci U S A 95:10229–10234

    Google Scholar 

  52. McAdoo DJ, Xu G, Robak G, Hughes MG, Price EM (2000) Evidence that reversed glutamate uptake contributes significantly to glutamate release following experimental injury to the rat spinal cord. Brain Res 865:283–285

    Article  CAS  PubMed  Google Scholar 

  53. Mott DD, Doherty JJ, Zhang S, Washburn MS, Fendley MJ, Lyuboslavsky P, Traynelis SF, Dingledine R (1998) Phenylethanolamines inhibit NMDA receptors by enhancing proton inhibition. Nat Neurosci 1:659–667

    Article  CAS  PubMed  Google Scholar 

  54. Mutch WA, Hansen AJ (1984) Extracellular pH changes during spreading depression and cerebral ischemia: mechanisms of brain pH regulation. J Cereb Blood Flow Metab 4:17–27

    CAS  PubMed  Google Scholar 

  55. Nicoll RA, Malenka RC, Kauer JA (1990) Functional comparison of neurotransmitter receptor subtypes in mammalian central nervous system. Physiol Rev 70:513–565

    CAS  PubMed  Google Scholar 

  56. Nielsen EB, Suzdak PD, Andersen KE, Knutsen LJ, Sonnewald U, Braestrup C (1991) Characterization of tiagabine (NO-328), a new potent and selective GABA uptake inhibitor. Eur J Pharmacol 196:257–266

    Article  CAS  PubMed  Google Scholar 

  57. Ottersen OP, Zhang N, Walberg F (1992) Metabolic compartmentation of glutamate and glutamine: morphological evidence obtained by quantitative immunocytochemistry in rat cerebellum. Neuroscience 46:519–534

    Article  CAS  PubMed  Google Scholar 

  58. Patneau DK, Mayer ML (1990) Structure-activity relationships for amino acid transmitter candidates acting at N-methyl-d-aspartate and quisqualate receptors. J Neurosci 10:2385–2399

    CAS  PubMed  Google Scholar 

  59. Patrylo PR, Spencer DD, Williamson A (2001) GABA uptake and heterotransport are impaired in the dentate gyrus of epileptic rats and humans with temporal lobe sclerosis. J Neurophysiol 85:1533–1542

    CAS  PubMed  Google Scholar 

  60. Phillis JW (1995) CI-966, a GABA uptake inhibitor, antagonizes ischemia-induced neuronal degeneration in the gerbil. Gen Pharmacol 26:1061–1064

    Article  CAS  PubMed  Google Scholar 

  61. Pitt D, Werner P, Raine CS (2000) Glutamate excitotoxicity in a model of multiple sclerosis. Nat Med 6:67–70

    Article  CAS  PubMed  Google Scholar 

  62. Pitt D, Nagelmeier IE, Wilson HC, Raine CS (2003) Glutamate uptake by oligodendrocytes: Implications for excitotoxicity in multiple sclerosis. Neurology 61:1113–1120

    Google Scholar 

  63. Raine CS (1997) The Norton Lecture: a review of the oligodendrocyte in the multiple sclerosis lesion. J Neuroimmunol 77:135–152

    Article  CAS  PubMed  Google Scholar 

  64. Rao VL, Bowen KK, Dempsey RJ (2001) Transient focal cerebral ischemia down-regulates glutamate transporters GLT-1 and EAAC1 expression in rat brain. Neurochem Res 26:497–502

    Article  CAS  PubMed  Google Scholar 

  65. Reaume AG, Elliott JL, Hoffman EK, Kowall NW, Ferrante RJ, Siwek DF, Wilcox HM, Flood DG, Beal MF, Brown RH, Jr., Scott RW, Snider WD (1996) Motor neurons in Cu/Zn superoxide dismutase-deficient mice develop normally but exhibit enhanced cell death after axonal injury. Nat Genet 13:43–47

    CAS  PubMed  Google Scholar 

  66. Ribak CE, Tong WM, Brecha NC (1996) GABA plasma membrane transporters, GAT-1 and GAT-3, display different distributions in the rat hippocampus. J Comp Neurol 367:595–606

    Article  CAS  PubMed  Google Scholar 

  67. Roettger V, Lipton P (1996) Mechanism of glutamate release from rat hippocampal slices during in vitro ischemia. Neuroscience 75:677–685

    Article  CAS  PubMed  Google Scholar 

  68. Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A, Donaldson D, Goto J, O’Regan JP, Deng HX, et al. (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362:59–62

    Article  CAS  PubMed  Google Scholar 

  69. Rosenberg LJ, Teng YD, Wrathall JR (1999) 2,3-Dihydroxy-6-nitro-7-sulfamoyl-benzo(f)quinoxaline reduces glial loss and acute white matter pathology after experimental spinal cord contusion. J Neurosci 19:464–475

    CAS  PubMed  Google Scholar 

  70. Rosenberg PA, Dai W, Gan XD, Ali S, Fu J, Back SA, Sanchez RM, Segal MM, Follett PL, Jensen FE, Volpe JJ (2003) Mature myelin basic protein-expressing oligodendrocytes are insensitive to kainate toxicity. J Neurosci Res 71:237–245

    Article  CAS  PubMed  Google Scholar 

  71. Rossi DJ, Oshima T, Attwell D (2000) Glutamate release in severe brain ischaemia is mainly by reversed uptake. Nature 403:316–321

    Article  CAS  PubMed  Google Scholar 

  72. Rothstein JD, Martin LJ, Kuncl RW (1992) Decreased glutamate transport by the brain and spinal cord in amyotrophic lateral sclerosis. N Engl J Med 326:1464–1468

    CAS  PubMed  Google Scholar 

  73. Rothstein JD, Van Kammen M, Levey AI, Martin LJ, Kuncl RW (1995) Selective loss of glial glutamate transporter GLT-1 in amyotrophic lateral sclerosis. Ann Neurol 38:73–84

    Google Scholar 

  74. Schwartz EA (1987) Depolarization without calcium can release gamma-aminobutyric acid from a retinal neuron. Science 238:350–355

    CAS  PubMed  Google Scholar 

  75. Silver IA, Erecinska M (1992) Ion homeostasis in rat brain in vivo: intra- and extracellular [Ca2+] and [H+] in the hippocampus during recovery from short-term, transient ischemia. J Cereb Blood Flow Metab 12:759–772

    CAS  PubMed  Google Scholar 

  76. Simantov R, Crispino M, Hoe W, Broutman G, Tocco G, Rothstein JD, Baudry M (1999) Changes in expression of neuronal and glial glutamate transporters in rat hippocampus following kainate-induced seizure activity. Brain Res Mol Brain Res 65:112–123

    Article  CAS  PubMed  Google Scholar 

  77. Smith T, Groom A, Zhu B, Turski L (2000) Autoimmune encephalomyelitis ameliorated by AMPA antagonists. Nat Med 6:62–66

    Article  CAS  PubMed  Google Scholar 

  78. Springer JE, Azbill RD, Mark RJ, Begley JG, Waeg G, Mattson MP (1997) 4-Hydroxynonenal, a lipid peroxidation product, rapidly accumulates following traumatic spinal cord injury and inhibits glutamate uptake. J Neurochem 68:2469–2476

    CAS  PubMed  Google Scholar 

  79. Swinyard EA, White HS, Wolf HH, Bondinell WE (1991) Anticonvulsant profiles of the potent and orally active GABA uptake inhibitors SK&F 89976-A and SK&F 100330-A and four prototype antiepileptic drugs in mice and rats. Epilepsia 32:569–577

    CAS  PubMed  Google Scholar 

  80. Szatkowski M, Attwell D (1994) Triggering and execution of neuronal death in brain ischaemia: two phases of glutamate release by different mechanisms. Trends Neurosci 17:359–365

    Google Scholar 

  81. Szatkowski M, Barbour B, Attwell D (1990) Non-vesicular release of glutamate from glial cells by reversed electrogenic glutamate uptake. Nature 348:443–446

    Article  CAS  PubMed  Google Scholar 

  82. Tanaka K, Watase K, Manabe T, Yamada K, Watanabe M, Takahashi K, Iwama H, Nishikawa T, Ichihara N, Kikuchi T, Okuyama S, Kawashima N, Hori S, Takimoto M, Wada K (1997) Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science 276:1699–1702

    Article  CAS  PubMed  Google Scholar 

  83. Tessler S, Danbolt NC, Faull RL, Storm-Mathisen J, Emson PC (1999) Expression of the glutamate transporters in human temporal lobe epilepsy. Neuroscience 88:1083–1091

    Article  CAS  PubMed  Google Scholar 

  84. Torp R, Arvin B, Le Peillet E, Chapman AG, Ottersen OP, Meldrum BS (1993) Effect of ischaemia and reperfusion on the extra- and intracellular distribution of glutamate, glutamine, aspartate and GABA in the rat hippocampus, with a note on the effect of the sodium channel blocker BW1003C87. Exp Brain Res 96:365–376

    CAS  PubMed  Google Scholar 

  85. Tortarolo M, Crossthwaite AJ, Conforti L, Spencer JP, Williams RJ, Bendotti C, Rattray M (2004) Expression of SOD1 G93A or wild-type SOD1 in primary cultures of astrocytes down-regulates the glutamate transporter GLT-1: lack of involvement of oxidative stress. J Neurochem 88:481–493

    CAS  PubMed  Google Scholar 

  86. Trotti D, Rolfs A, Danbolt NC, Brown RH Jr, Hediger MA (1999) SOD1 mutants linked to amyotrophic lateral sclerosis selectively inactivate a glial glutamate transporter. Nat Neurosci 2:427–433

    Article  CAS  PubMed  Google Scholar 

  87. Uthman BM, Rowan AJ, Ahmann PA, Leppik IE, Schachter SC, Sommerville KW, Shu V (1998) Tiagabine for complex partial seizures: a randomized, add-on, dose-response trial. Arch Neurol 55:56–62

    Article  CAS  PubMed  Google Scholar 

  88. Vera-Portocarrero LP, Mills CD, Ye Z, Fullwood SD, McAdoo DJ, Hulsebosch CE, Westlund KN (2002) Rapid changes in expression of glutamate transporters after spinal cord injury. Brain Res 927:104–110

    Article  CAS  PubMed  Google Scholar 

  89. Volpe JJ (2001) Neurobiology of periventricular leukomalacia in the premature infant. Pediatr Res 50:553–562

    CAS  PubMed  Google Scholar 

  90. Werner P, Pitt D, Raine CS (2001) Multiple sclerosis: altered glutamate homeostasis in lesions correlates with oligodendrocyte and axonal damage. Ann Neurol 50:169–180

    Google Scholar 

  91. Westall FC, Hawkins A, Ellison GW, Myers LW (1980) Abnormal glutamic acid metabolism in multiple sclerosis. J Neurol Sci 47:353–364

    Article  CAS  PubMed  Google Scholar 

  92. Wrathall JR, Bouzoukis J, Choiniere D (1992) Effect of kynurenate on functional deficits resulting from traumatic spinal cord injury. Eur J Pharmacol 218:273–281

    Article  CAS  PubMed  Google Scholar 

  93. Wrathall JR, Teng YD, Choiniere D (1996) Amelioration of functional deficits from spinal cord trauma with systemically administered NBQX, an antagonist of non-N-methyl-d-aspartate receptors. Exp Neurol 137:119–126

    Google Scholar 

  94. Wrathall JR, Teng YD, Marriott R (1997) Delayed antagonism of AMPA/kainate receptors reduces long-term functional deficits resulting from spinal cord trauma. Exp Neurol 145:565–573

    Google Scholar 

  95. Wu Y, Wang W, Richerson GB (2001) GABA transaminase inhibition induces spontaneous and enhances depolarization-evoked GABA efflux via reversal of the GABA transporter. J Neurosci 21:2630–2639

    CAS  PubMed  Google Scholar 

  96. Wu Y, Wang W, Richerson GB (2003) Vigabatrin induces tonic inhibition via GABA transporter reversal without increasing vesicular GABA release. J Neurophysiol 89:2021–2034

    CAS  PubMed  Google Scholar 

  97. Yamada K, Watanabe M, Shibata T, Nagashima M, Tanaka K, Inoue Y (1998) Glutamate transporter GLT-1 is transiently localized on growing axons of the mouse spinal cord before establishing astrocytic expression. J Neurosci 18:5706–5713

    CAS  PubMed  Google Scholar 

  98. Zeevalk GD, Nicklas WJ (1996) Attenuation of excitotoxic cell swelling and GABA release by the GABA transport inhibitor SKF 89976A. Mol Chem Neuropathol 29:27–36

    CAS  PubMed  Google Scholar 

  99. Zeevalk GD, Nicklas WJ (1997) Activity at the GABA transporter contributes to acute cellular swelling produced by metabolic impairment in retina. Vision Res 37:3463–3470

    Article  CAS  PubMed  Google Scholar 

  100. Zerangue N, Kavanaugh MP (1996) Flux coupling in a neuronal glutamate transporter. Nature 383:634–637

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Supported by the Wellcome Trust, the EU, and a Wolfson-Royal Society Award. N.A. and R.K. were in the 4-year PhD Programme in Neuroscience at University College London.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Attwell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allen, N.J., Káradóttir, R. & Attwell, D. Reversal or reduction of glutamate and GABA transport in CNS pathology and therapy. Pflugers Arch - Eur J Physiol 449, 132–142 (2004). https://doi.org/10.1007/s00424-004-1318-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-004-1318-x

Keywords

Navigation