Skip to main content
Log in

Essential role for TRPM6 in epithelial magnesium transport and body magnesium homeostasis

  • Invited Review
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

Magnesium is an important cofactor for many biological processes such as protein synthesis, nucleic acid stability and neuromuscular excitability. The extracellular magnesium concentration is regulated tightly by the extent of intestinal absorption and renal excretion. Despite their critical role in magnesium handling, the molecular mechanisms mediating transepithelial transport are still not understood completely. Recently, genetic studies in patients with primary hypomagnesaemia and secondary hypocalcaemia (HSH), a combined defect of intestinal magnesium absorption and renal magnesium conservation, have identified “transient receptor potential (melastatin) 6” (TRPM6) as the first component involved directly in epithelial magnesium reabsorption. TRPM7, the closest homologue of TRPM6, has a central role in Mg2+ uptake in vertebrate cells since TRPM7-deficient cells become Mg2+ deficient and are not viable. TRPM7 has been characterized functionally as a constitutively active ion channel permeable for a variety of cations including calcium and magnesium and regulated by intracellular concentrations of magnesium and/or magnesium-nucleotide complexes. Both proteins share the unique feature of cation channels fused to serine/threonine kinase domains. This review summarizes recent data that has emerged from molecular genetic, biochemical and electrophysiological studies on these fascinating two new proteins and their involvement in epithelial magnesium transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2a–d
Fig. 3

Similar content being viewed by others

References

  1. Aarts M, Iihara K, Wei WL, Xiong ZG, Arundine M, Cerwinski W, MacDonald JF, Tymianski M (2003) A key role for TRPM7 channels in anoxic neuronal death. Cell 115:863–877

    Google Scholar 

  2. Anast CS, Mohs JM, Kaplan SL, Burns TW (1972) Evidence for parathyroid failure in magnesium deficiency. Science 177:606–608

    Google Scholar 

  3. Chubanov V, Waldegger S, Mederos Y, Schnitzler M, Vitzthum H, Sassen MC, Seyberth HW, Konrad M, Gudermann T (2004) Disruption of TRPM6/TRPM7 complex formation by a mutation in the TRPM6 gene causes hypomagnesemia with secondary hypocalcemia. Proc Natl Acad Sci USA 101:2894–2899

    Google Scholar 

  4. Cole DE, Quamme GA (2000) Inherited disorders of renal magnesium handling. J Am Soc Nephrol 11:1937–1947

    Google Scholar 

  5. Cole DE, Kooh SW, Vieth R (2000) Primary infantile hypomagnesaemia: outcome after 21 years and treatment with continuous nocturnal nasogastric magnesium infusion. Eur J Pediatr 159:38–43

    Google Scholar 

  6. Dorovkov MV, Ryazanov AG (2004) Phosphorylation of annexin I by TRPM7 channel-kinase. J Biol Chem 279:50643–50646

    Google Scholar 

  7. Elizondo MR, Arduini BL, Paulsen J, MacDonald EL, Sabel JL, Henion PD, Cornell RA, Parichy DM (2005) Defective skeletogenesis with kidney stone formation in dwarf zebrafish mutant for trpm7. Curr Biol 15:667–671

    Google Scholar 

  8. Fine KD, Santa Ana CA, Porter JL, Fordtran JS (1991) Intestinal absorption of magnesium from food and supplements. J Clin Invest 88:396–402

    Google Scholar 

  9. Goytain A, Quamme GA (2005) Functional characterization of human SLC41A1, a Mg2+ transporter with similarity to prokaryotic MgtE Mg2+ transporters. Physiol Genomics doi:10.1152/physiolgenomics.00058.2005

  10. Goytain A, Quamme GA (2005) Functional characterization of the human solute carrier, SLC41A2. Biochem Biophys Res Commun 330:701–705

    Google Scholar 

  11. Goytain A, Quamme GA (2005) Identification and characterization of a novel mammalian Mg2+ transporter with channel-like properties. BMC Genomics 6:48

    Google Scholar 

  12. Grubbs RD (2002) Intracellular magnesium and magnesium buffering. Biometals 15:251–259

    Google Scholar 

  13. Hanano T, Hara Y, Shi J, Morita H, Umebayashi C, Mori E, Sumimoto H, Ito Y, Mori Y, Inoue R (2004) Involvement of TRPM7 in cell growth as a spontaneously activated Ca2+ entry pathway in human retinoblastoma cells. J Pharmacol Sci 95:403–419

    Google Scholar 

  14. Hofmann T, Schaefer M, Schultz G, Gudermann T (2002) Subunit composition of mammalian transient receptor potential channels in living cells. Proc Natl Acad Sci USA 99:7461–7466

    Google Scholar 

  15. Kerstan D, Quamme GA (2002) Physiology and pathophysiology of intestinal absorption of magnesium. In: Morii H, Nishizawa Y, Massry SG (eds) Calcium in internal medicine. Springer, Berlin Heidelberg New York, pp 171–183

    Google Scholar 

  16. Konrad M, Weber S (2003) Recent advances in molecular genetics of hereditary magnesium-losing disorders. J Am Soc Nephrol 14:249–260

    Google Scholar 

  17. Konrad M, Schlingmann KP, Gudermann T (2004) Insights into the molecular nature of magnesium homeostasis. Am J Physiol 286:F599–F605

    Google Scholar 

  18. Lombeck I, Ritzl F, Schnippering HG, Michael H, Bremer HJ, Feinendegen LE, Kosenow W (1975) Primary hypomagnesemia. I. Absorption Studies. Z Kinderheilkd 118:249–258

    Google Scholar 

  19. Matsushita M, Kozak JA, Shimizu Y, McLachlin DT, Yamaguchi H, Wei FY, Tomizawa K, Matsui H, Chait BT, Cahalan MD, Nairn AC (2005) Channel function is dissociated from the intrinsic kinase activity and autophosphorylation of TRPM7/CHAK1. J Biol Chem 280:20793–20803

    Google Scholar 

  20. Matzkin H, Lotan D, Boichis H (1989) Primary hypomagnesemia with a probable double magnesium transport defect. Nephron 52:83–86

    Google Scholar 

  21. Milla PJ, Aggett PJ, Wolff OH, Harries JT (1979) Studies in primary hypomagnesaemia: evidence for defective carrier-mediated small intestinal transport of magnesium. Gut 20:1028–1033

    Google Scholar 

  22. Monteilh-Zoller MK, Hermosura MC, Nadler MJ, Scharenberg AM, Penner R, Fleig A (2003) TRPM7 provides an ion channel mechanism for cellular entry of trace metal ions. J Gen Physiol 121:49–60

    Google Scholar 

  23. Montell C (2003) Mg2+ homeostasis: the Mg2+nificent TRPM chanzymes. Curr Biol 13:R799–R801

    Google Scholar 

  24. Nadler MJ, Hermosura MC, Inabe K, Perraud AL, Zhu Q, Stokes AJ, Kurosaki T, Kinet JP, Penner R, Scharenberg AM, Fleig A (2001) LTRPC7 is a Mg.ATP-regulated divalent cation channel required for cell viability. Nature 411:590–595

    Google Scholar 

  25. Paunier L, Radde IC, Kooh SW, Conen PE, Fraser D (1968) Primary hypomagnesemia with secondary hypocalcemia in an infant. Pediatrics 41:385–402

    Google Scholar 

  26. Perretti M, Solito E (2004) Annexin 1 and neutrophil apoptosis. Biochem Soc Trans 32:507–510

    Google Scholar 

  27. Quamme GA (1997) Renal magnesium handling: new insights in understanding old problems. Kidney Int 52:1180–1195

    Google Scholar 

  28. Rescher U, Gerke V (2004) Annexins—unique membrane binding proteins with diverse functions. J Cell Sci 117:2631–2639

    Google Scholar 

  29. Rodriguez-Soriano J, Vallo A, Garcia-Fuentes M (1987) Hypomagnesaemia of hereditary renal origin. Pediatr Nephrol 1:465–472

    Google Scholar 

  30. Romani AM, Maguire ME (2002) Hormonal regulation of Mg2+ transport and homeostasis in eukaryotic cells. Biometals 15:271–283

    Google Scholar 

  31. Runnels LW, Yue L, Clapham DE (2001) TRP-PLIK, a bifunctional protein with kinase and ion channel activities. Science 291:1043–1047

    Google Scholar 

  32. Ryazanova LV, Pavur KS, Petrov AN, Dorovkov MV, Ryazanov AG (2001) Novel type of signaling molecules: protein kinases covalently linked with ion channels. Mol Biol 35:271–283

    Google Scholar 

  33. Schlingmann KP, Weber S, Peters M, Niemann Nejsum L, Vitzthum H, Klingel K, Kratz M, Haddad E, Ristoff E, Dinour D, Syrrou M, Nielsen S, Sassen M, Waldegger S, Seyberth HW, Konrad M (2002) Hypomagnesemia with secondary hypocalcemia is caused by mutations in TRPM6, a new member of the TRPM gene family. Nat Genet 31:166–170

    Google Scholar 

  34. Schlingmann KP, Konrad M, Seyberth HW (2004) Genetics of hereditary disorders of magnesium homeostasis. Pediatr Nephrol 19:13–25

    Google Scholar 

  35. Schmitz C, Perraud AL, Johnson CO, Inabe K, Smith MK, Penner R, Kurosaki T, Fleig A, Scharenberg AM (2003) Regulation of vertebrate cellular Mg2+ homeostasis by TRPM7. Cell 114:191–200

    Google Scholar 

  36. Schmitz C, Perraud AL, Fleig A, Scharenberg AM (2004) Dual-function ion channel/protein kinases: novel components of vertebrate magnesium regulatory mechanisms. Pediatr Res 55:734–737

    Google Scholar 

  37. Simon DB, Lu Y, Choate KA, Velazquez H, Al-Sabban E, Praga M, Casari G, Bettinelli A, Colussi G, Rodriguez-Soriano J, McCredie D, Milford D, Sanjad S, Lifton RP (1999) Paracellin-1, a renal tight junction protein required for paracellular Mg2+ resorption. Science 285:103–106

    Google Scholar 

  38. Stromme JH, Steen-Johnsen J, Harnaes K, Hofstad F, Brandtzaeg P (1981) Familial hypomagnesemia—a follow-up examination of three patients after 9–12 years of treatment. Pediatr Res 15:1134–1139

    Google Scholar 

  39. Vennekens R, Voets T, Bindels RJ, Droogmans G, Nilius B (2002) Current understanding of mammalian TRP homologues. Cell Calcium 31:253–264

    Google Scholar 

  40. Voets T, Nilius B, Hoefs S, van der Kemp AW, Droogmans G, Bindels RJ, Hoenderop JG (2004) TRPM6 forms the Mg2+ influx channel involved in intestinal and renal Mg2+ absorption. J Biol Chem 279:19–25

    Google Scholar 

  41. Wabakken T, Rian E, Kveine M, Aasheim HC (2003) The human solute carrier SLC41A1 belongs to a novel eukaryotic subfamily with homology to prokaryotic MgtE Mg2+ transporters. Biochem Biophys Res Commun 306:718–724

    Google Scholar 

  42. Walder RY, Shalev H, Brennan TM, Carmi R, Elbedour K, Scott DA, Hanauer A, Mark AL, Patil S, Stone EM, Sheffield VC (1997) Familial hypomagnesemia maps to chromosome 9q, not to the X chromosome: genetic linkage mapping and analysis of a balanced translocation breakpoint. Hum Mol Genet 6:1491–1497

    Google Scholar 

  43. Walder RY, Landau D, Meyer P, Shalev H, Tsolia M, Borochowitz Z, Boettger MB, Beck GE, Englehardt RK, Carmi R, Sheffield VC (2002) Mutation of TRPM6 causes familial hypomagnesemia with secondary hypocalcemia. Nat Genet 31:171–174

    Google Scholar 

  44. Weber S, Schneider L, Peters M, Misselwitz J, Ronnefarth G, Boswald M, Bonzel KE, Seeman T, Sulakova T, Kuwertz-Broking E, Gregoric A, Palcoux JB, Tasic V, Manz F, Scharer K, Seyberth HW, Konrad M (2001) Novel paracellin-1 mutations in 25 families with familial hypomagnesemia with hypercalciuria and nephrocalcinosis. J Am Soc Nephrol 12:1872–1881

    Google Scholar 

  45. Wolf FI, Torsello A, Fasanella S, Cittadini A (2003) Cell physiology of magnesium. Mol Aspects Med 24:11–26

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl P. Schlingmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chubanov, V., Gudermann, T. & Schlingmann, K.P. Essential role for TRPM6 in epithelial magnesium transport and body magnesium homeostasis. Pflugers Arch - Eur J Physiol 451, 228–234 (2005). https://doi.org/10.1007/s00424-005-1470-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-005-1470-y

Keywords

Navigation