Skip to main content
Log in

Functional involvement of Annexin-2 in cAMP induced AQP2 trafficking

  • Cell and Molecular Physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Annexin-2 is required for the apical transport in epithelial cells. In this study, we investigated the involvement of annexin-2 in cAMP-induced aquaporin-2 (AQP2) translocation to the apical membrane in renal cells. We found that the cAMP-elevating agent forskolin increased annexin-2 abundance in the plasma membrane enriched fraction with a parallel decrease in the soluble fraction. Interestingly, forskolin stimulation resulted in annexin-2 enrichment in lipid rafts, suggesting that hormonal stimulation might be responsible for a new configuration of membrane interacting proteins involved in the fusion of AQP2 vesicles to the apical plasma membrane. To investigate the functional involvement of annexin-2 in AQP2 exocytosis, the fusion process between purified AQP2 membrane vesicles and plasma membranes was reconstructed in vitro and monitored by a fluorescence assay. An N-terminal peptide that comprises 14 residues of annexin-2 and that includes the binding site for the calcium binding protein p11 strongly inhibited the fusion process. Preincubation of cells with this annexin-2 peptide also failed to increase the osmotic water permeability in the presence of forskolin in intact cells. Altogether, these data demonstrate that annexin-2 is required for cAMP-induced AQP2 exocytosis in renal cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gade W, Robinson B (2006) A brief survey of aquaporins and their implications for renal physiology. Clin Lab Sci 19:70–79 DOI Electronic Resource Number

    PubMed  Google Scholar 

  2. Robben JH, Knoers NV, Deen PM (2006) Cell biological aspects of the vasopressin type-2 receptor and aquaporin 2 water channel in nephrogenic diabetes insipidus. Am J Physiol Renal Physiol 291:F257–270 DOI Electronic Resource Number

    Article  PubMed  CAS  Google Scholar 

  3. Noda Y, Sasaki S (2005) Trafficking mechanism of water channel aquaporin-2. Biol Cell 97:885–892 DOI Electronic Resource Number

    Article  PubMed  CAS  Google Scholar 

  4. Valenti G, Procino G, Tamma G, Carmosino M, Svelto M (2005) Minireview: aquaporin 2 trafficking. Endocrinology 146:5063–5070 DOI Electronic Resource Number

    Article  PubMed  CAS  Google Scholar 

  5. Verkman AS (2005) More than just water channels: unexpected cellular roles of aquaporins. J Cell Sci 118:3225–3232 DOI Electronic Resource Number

    Article  PubMed  CAS  Google Scholar 

  6. Chizmadzhev YA, Kuzmin PI, Kumenko DA, Zimmerberg J, Cohen FS (2000) Dynamics of fusion pores connecting membranes of different tensions. Biophys J 78:2241–2256 DOI Electronic Resource Number

    PubMed  CAS  Google Scholar 

  7. Chen YA, Scheller RH (2001) SNARE-mediated membrane fusion. Nat Rev Mol Cell Biol 2:98–106 DOI Electronic Resource Number

    Article  PubMed  CAS  Google Scholar 

  8. Rickman C, Jimenez JL, Graham ME, Archer DA, Soloviev M, Burgoyne RD, Davletov B (2006) Conserved prefusion protein assembly in regulated exocytosis. Mol Biol Cell 17:283–294 DOI Electronic Resource Number

    Article  PubMed  CAS  Google Scholar 

  9. Wei L, Montana V, Bai J, Chapman ER, Umar M, Parpura V (2006) Single molecule mechanical probing of the SNARE protein interactions. Biophys J 91:744‑758

    Google Scholar 

  10. Jo I, Harris HW, Amendt-Raduege AM, Majewski RR, Hammond TG (1995) Rat kidney papilla contains abundant synaptobrevin protein that participates in the fusion of antidiuretic hormone-regulated water channel-containing endosomes in vitro. Proc Natl Acad Sci U S A 92:1876–1880 DOI Electronic Resource Number

    Article  PubMed  CAS  Google Scholar 

  11. Nielsen S, Marples D, Birn H, Mohtashami M, Dalby NO, Trimble M, Knepper M (1995) Expression of VAMP-2-like protein in kidney collecting duct intracellular vesicles. Colocalization with Aquaporin-2 water channels. J Clin Invest 96:1834–1844 DOI Electronic Resource Number

    Article  PubMed  CAS  Google Scholar 

  12. Barile M, Pisitkun T, Yu MJ, Chou CL, Verbalis MJ, Shen RF, Knepper MA (2005) Large scale protein identification in intracellular aquaporin-2 vesicles from renal inner medullary collecting duct. Mol Cell Proteomics 4:1095–1106 DOI Electronic Resource Number

    Article  PubMed  CAS  Google Scholar 

  13. Gouraud S, Laera A, Calamita G, Carmosino M, Procino G, Rossetto O, Mannucci R, Rosenthal W, Svelto M, Valenti G (2002) Functional involvement of VAMP/synaptobrevin-2 in cAMP-stimulated aquaporin 2 translocation in renal collecting duct cells. J Cell Sci 115:3667–3674 DOI Electronic Resource Number

    Article  PubMed  CAS  Google Scholar 

  14. Noda Y, Horikawa S, Katayama Y, Sasaki S (2005) Identification of a multiprotein “motor” complex binding to water channel aquaporin-2. Biochem Biophys Res Commun 330:1041–1047 DOI Electronic Resource Number

    Article  PubMed  CAS  Google Scholar 

  15. Noda Y, Horikawa S, Katayama Y, Sasaki S (2004) Water channel aquaporin-2 directly binds to actin. Biochem Biophys Res Commun 322:740–745 DOI Electronic Resource Number

    Article  PubMed  CAS  Google Scholar 

  16. Gerke V, Creutz CE, Moss SE (2005) Annexins: linking Ca2 + signalling to membrane dynamics. Nat Rev Mol Cell Biol 6:449–461 DOI Electronic Resource Number

    Article  PubMed  CAS  Google Scholar 

  17. Gerke V, Moss SE (2002) Annexins: from structure to function. Physiol Rev 82:331–371 DOI Electronic Resource Number

    PubMed  CAS  Google Scholar 

  18. Rescher U, Gerke V (2007) S100A10/p11: family, friends and functions. Pflugers Arch 455:575–582

    Article  PubMed  CAS  Google Scholar 

  19. Liu L, Tao JQ, Zimmerman UJ (1997) Annexin II binds to the membrane of A549 cells in a calcium-dependent and calcium-independent manner. Cell Signal 9:299–304 DOI Electronic Resource Number

    Article  PubMed  CAS  Google Scholar 

  20. Filipenko NR, Waisman DM (2001) The C terminus of annexin II mediates binding to F-actin. J Biol Chem 276:5310–5315 DOI Electronic Resource Number

    Article  PubMed  CAS  Google Scholar 

  21. Goebeler V, Ruhe D, Gerke V, Rescher U (2006) Annexin A8 displays unique phospholipid and F-actin binding properties. FEBS Lett 580:2430–2434 DOI Electronic Resource Number

    Article  PubMed  CAS  Google Scholar 

  22. Raynal P, Pollard HB (1994) Annexins: the problem of assessing the biological role for a gene family of multifunctional calcium- and phospholipid-binding proteins. Biochim Biophys Acta 1197:63–93 DOI Electronic Resource Number

    PubMed  CAS  Google Scholar 

  23. Hayes MJ, Merrifield CJ, Shao D, Ayala-Sanmartin J, Schorey CD, Levine TP, Proust J, Curran J, Bailly M, Moss SE (2004) Annexin 2 binding to phosphatidylinositol 4,5-bisphosphate on endocytic vesicles is regulated by the stress response pathway. J Biol Chem 279:14157–14164 DOI Electronic Resource Number

    Article  PubMed  CAS  Google Scholar 

  24. Hayes MJ, Rescher U, Gerke V, Moss SE (2004) Annexin-actin interactions. Traffic 5:571–576 DOI Electronic Resource Number

    Article  PubMed  CAS  Google Scholar 

  25. Becker T, Weber K, Johnsson N (1990) Protein-protein recognition via short amphiphilic helices; a mutational analysis of the binding site of annexin II for p11. Embo J 9:4207–4213 DOI Electronic Resource Number

    PubMed  CAS  Google Scholar 

  26. Johnsson N, Marriott G, Weber K (1988) p36, the major cytoplasmic substrate of src tyrosine protein kinase, binds to its p11 regulatory subunit via a short amino-terminal amphiphatic helix. Embo J 7:2435–2442 DOI Electronic Resource Number

    PubMed  CAS  Google Scholar 

  27. Rety S, Sopkova J, Renouard M, Osterloh D, Gerke V, Tabaries S, Russo-Marie F, Lewit-Bentley A (1999) The crystal structure of a complex of p11 with the annexin II N-terminal peptide. Nat Struct Biol 6:89–95 DOI Electronic Resource Number

    Article  PubMed  CAS  Google Scholar 

  28. Nilius B, Gerke V, Prenen J, Szucs G, Heinke S, Weber K, Droogmans G (1996) Annexin II modulates volume-activated chloride currents in vascular endothelial cells. J Biol Chem 271:30631–30636 DOI Electronic Resource Number

    Article  PubMed  CAS  Google Scholar 

  29. Johnstone SA, Hubaishy I, Waisman DM (1992) Phosphorylation of annexin II tetramer by protein kinase C inhibits aggregation of lipid vesicles by the protein. J Biol Chem 267:25976–25981 DOI Electronic Resource Number

    PubMed  CAS  Google Scholar 

  30. Gou D, Narasaraju T, Chintagari NR, Jin N, Wang P, Liu L (2004) Gene silencing in alveolar type II cells using cell-specific promoter in vitro and in vivo. Nucleic Acids Res 32:e134 DOI Electronic Resource Number

    Article  PubMed  CAS  Google Scholar 

  31. Chintagari NR, Jin N, Wang P, Narasaraju TA, Chen J, Liu L (2006) Effect of cholesterol depletion on exocytosis of alveolar type II cells. Am J Respir Cell Mol Biol 34:677–687 DOI Electronic Resource Number

    Article  PubMed  CAS  Google Scholar 

  32. Babiychuk EB, Draeger A (2000) Annexins in cell membrane dynamics. Ca(2+)-regulated association of lipid microdomains. J Cell Biol 150:1113–1124 DOI Electronic Resource Number

    Article  PubMed  CAS  Google Scholar 

  33. Oliferenko S, Paiha K, Harder T, Gerke V, Schwarzler C, Schwarz H, Beug H, Gunthert U, Huber LA (1999) Analysis of CD44-containing lipid rafts: Recruitment of annexin II and stabilization by the actin cytoskeleton. J Cell Biol 146:843–854 DOI Electronic Resource Number

    Article  PubMed  CAS  Google Scholar 

  34. Markoff A, Gerke V (2005) Expression and functions of annexins in the kidney. Am J Physiol Renal Physiol 289:F949–F956 DOI Electronic Resource Number

    Article  PubMed  CAS  Google Scholar 

  35. van de Graaf SF, Hoenderop JG, Gkika D, Lamers D, Prenen J, Rescher U, Gerke V, Staub O, Nilius B, Bindels RJ (2003) Functional expression of the epithelial Ca(2+) channels (TRPV5 and TRPV6) requires association of the S100A10-annexin 2 complex. Embo J 22:1478–1487 DOI Electronic Resource Number

    Article  PubMed  Google Scholar 

  36. Tamma G, Procino G, Strafino A, Bononi E, Meyer G, Paulmichl M, Formoso V, Svelto M, Valenti G (2007) Hypotonicity induces aquaporin-2 internalization and cytosol-to-membrane translocation of ICln in renal cells. Endocrinology 148:1118–1130 DOI Electronic Resource Number

    Article  PubMed  CAS  Google Scholar 

  37. Song KS, Li S, Okamoto T, Quilliam LA, Sargiacomo M, Lisanti MP (1996) Co-purification and direct interaction of Ras with caveolin, an integral membrane protein of caveolae microdomains. Detergent-free purification of caveolae microdomains. J Biol Chem 271:9690–9697 DOI Electronic Resource Number

    Article  PubMed  CAS  Google Scholar 

  38. Valenti G, Procino G, Liebenhoff U, Frigeri A, Benedetti PA, Ahnert-Hilger G, Nurnberg B, Svelto M, Rosenthal W (1998) A heterotrimeric G protein of the Gi family is required for cAMP-triggered trafficking of aquaporin 2 in kidney epithelial cells. J Biol Chem 273:22627–22634 DOI Electronic Resource Number

    Article  PubMed  CAS  Google Scholar 

  39. Chattopadhyay S, Sun P, Wang P, Abonyo B, Cross NL, Liu L (2003) Fusion of lamellar body with plasma membrane is driven by the dual action of annexin II tetramer and arachidonic acid. J Biol Chem 278:39675–39683 DOI Electronic Resource Number

    Article  PubMed  CAS  Google Scholar 

  40. Farinas J, Simanek V, Verkman AS (1995) Cell volume measured by total internal reflection microfluorimetry: application to water and solute transport in cells transfected with water channel homologs. Biophys J 68:1613–1620 DOI Electronic Resource Number

    Article  PubMed  CAS  Google Scholar 

  41. Valenti G, Frigeri A, Ronco PM, D'Ettorre C, Svelto M (1996) Expression and functional analysis of water channels in a stably AQP2-transfected human collecting duct cell line. J Biol Chem 271:24365–24370 DOI Electronic Resource Number

    Article  PubMed  CAS  Google Scholar 

  42. Babiychuk EB, Monastyrskaya K, Burkhard FC, Wray S, Draeger A (2002) Modulating signaling events in smooth muscle: cleavage of annexin 2 abolishes its binding to lipid rafts. Faseb J 16:1177–1184 DOI Electronic Resource Number

    Article  PubMed  CAS  Google Scholar 

  43. Langosch D, Crane JM, Brosig B, Hellwig A, Tamm LK, Reed J (2001) Peptide mimics of SNARE transmembrane segments drive membrane fusion depending on their conformational plasticity. J Mol Biol 311:709–721 DOI Electronic Resource Number

    Article  PubMed  CAS  Google Scholar 

  44. Salaun C, James DJ, Chamberlain LH (2004) Lipid rafts and the regulation of exocytosis. Traffic 5:255–264 DOI Electronic Resource Number

    Article  PubMed  Google Scholar 

  45. Hoekstra D, de Boer T, Klappe K, Wilschut J (1984) Fluorescence method for measuring the kinetics of fusion between biological membranes. Biochemistry 23:5675–5681 DOI Electronic Resource Number

    Article  PubMed  CAS  Google Scholar 

  46. Duman JG, Singh G, Lee GY, Machen TE, Forte JG (2002) Ca(2+) and Mg(2+)/ATP independently trigger homotypic membrane fusion in gastric secretory membranes. Traffic 3:203–217 DOI Electronic Resource Number

    Article  PubMed  CAS  Google Scholar 

  47. Faure AV, Migne C, Devilliers G, Ayala-Sanmartin J (2002) Annexin 2 “secretion” accompanying exocytosis of chromaffin cells: possible mechanisms of annexin release. Exp Cell Res 276:79–89 DOI Electronic Resource Number

    Article  PubMed  CAS  Google Scholar 

  48. Liu L, Fisher AB, Zimmerman UJ (1995) Lung annexin II promotes fusion of isolated lamellar bodies with liposomes. Biochim Biophys Acta 1259:166–172 DOI Electronic Resource Number

    PubMed  Google Scholar 

  49. Lee DB, Jamgotchian N, Allen SG, Kan FW, Hale IL (2004) Annexin A2 heterotetramer: role in tight junction assembly. Am J Physiol Renal Physiol 287:F481–F491 DOI Electronic Resource Number

    Article  PubMed  CAS  Google Scholar 

  50. Thiel C, Osborn M, Gerke V (1992) The tight association of the tyrosine kinase substrate annexin II with the submembranous cytoskeleton depends on intact p11- and Ca(2+)-binding sites. J Cell Sci 103(Pt 3):733–742 DOI Electronic Resource Number

    PubMed  CAS  Google Scholar 

  51. Brown DA, London E (1998) Functions of lipid rafts in biological membranes. Annu Rev Cell Dev Biol 14:111–136 DOI Electronic Resource Number

    Article  PubMed  CAS  Google Scholar 

  52. Rajendran L, Simons K (2005) Lipid rafts and membrane dynamics. J Cell Sci 118:1099–1102 DOI Electronic Resource Number

    Article  PubMed  CAS  Google Scholar 

  53. Simons K, Toomre D (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1:31–39 DOI Electronic Resource Number

    Article  PubMed  CAS  Google Scholar 

  54. Harder T, Kellner R, Parton RG, Gruenberg J (1997) Specific release of membrane-bound annexin II and cortical cytoskeletal elements by sequestration of membrane cholesterol. Mol Biol Cell 8:533–545 DOI Electronic Resource Number

    PubMed  CAS  Google Scholar 

  55. Brown D (2003) The ins and outs of aquaporin-2 trafficking. Am J Physiol Renal Physiol 284:F893–F901 DOI Electronic Resource Number

    PubMed  CAS  Google Scholar 

  56. Klussmann E, Tamma G, Lorenz D, Wiesner B, Maric K, Hofmann F, Aktories K, Valenti G, Rosenthal W (2001) An inhibitory role of Rho in the vasopressin-mediated translocation of aquaporin-2 into cell membranes of renal principal cells. J Biol Chem 276:20451–20457 DOI Electronic Resource Number

    Article  PubMed  CAS  Google Scholar 

  57. Tamma G, Klussmann E, Oehlke J, Krause E, Rosenthal W, Svelto M, Valenti G (2005) Actin remodeling requires ERM function to facilitate AQP2 apical targeting. J Cell Sci 118:3623–3630 DOI Electronic Resource Number

    Article  PubMed  CAS  Google Scholar 

  58. Hayes MJ, Shao D, Bailly M, Moss SE (2006) Regulation of actin dynamics by annexin 2. Embo J 25:1816–1826 DOI Electronic Resource Number

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by grants from Telethon (proposal no. GGP04202 to G. Valenti), from PRIN (Research Program of National Interest) to G. Valenti, from Centro di Eccellenza di Genomica in campo Biomedico ed Agrario (CEGBA), and from the Regional Project 2007 to G. Valenti.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanna Valenti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tamma, G., Procino, G., Mola, M.G. et al. Functional involvement of Annexin-2 in cAMP induced AQP2 trafficking. Pflugers Arch - Eur J Physiol 456, 729–736 (2008). https://doi.org/10.1007/s00424-008-0453-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-008-0453-1

Keywords

Navigation