Skip to main content

Advertisement

Log in

A brief history of trp: commentary and personal perspective

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The history of the discovery of the transient receptor potential (TRP) cation channel superfamily began in 1969 with Cosens and Manning's isolation of the Drosophila transient receptor potential mutant, in which the photoreceptor response decays during continuous illumination. Early studies from Minke found that the elementary light response was unaffected in trp mutants, and he attributed the defect to an intermediate stage of phototransduction. Montell and Rubin cloned the trp gene in 1989: they recognised it as a transmembrane protein, but also concluded that it did not encode the light-sensitive channels. In 1991, Minke and Selinger proposed that TRP represented a Ca2+ transporter required for refilling intracellular InsP3-sensitive Ca2+ stores, in turn required for activation of the light-sensitive channels. Also in 1991, after developing a photoreceptor patch clamp preparation, I showed that the light-sensitive channels themselves were highly permeable to Ca2+, questioning the need for such a dedicated Ca2+ transporter. In 1992, in collaboration with Minke, I resolved this paradox by showing there were two classes of light-sensitive channels, one highly Ca2+ permeable and eliminated in trp mutants. This represented the first and compelling evidence that TRP represented a light-sensitive channel and was supported by the cloning of the second light-sensitive channel, TRPL, by Kelly's lab. Three years later, in 1995, the labs of Montell and Birnbaumer independently cloned TRPC1, the first of 29 vertebrate TRP isoforms distributed amongst seven subfamilies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. After it became possible to make higher resolution whole-cell voltage clamp patch recordings, quantum bumps in null trp mutants were, in fact, found to be 3–4× smaller than the wild type [21, 42]. Apart from using noise analysis of intracellular voltage recordings, Minke's findings in this respect may also have been compromised by his unwitting use of a trp allele that was not null [34]—although he reported similar results in wild-type flies using La3+, which completely blocks the TRP channel [51].

References

  1. Acharya JK, Jalink K, Hardy RW, Hartenstein V, Zuker CS (1997) InsP3 receptor is essential for growth and differentiation but not for vision in Drosophila. Neuron 18:881–887

    Article  PubMed  CAS  Google Scholar 

  2. Bacigalupo J, Chinn K, Lisman JE (1986) Ion channels activated by light in Limulus ventral photoreceptors. J Gen Physiol 87:73–89

    Article  PubMed  CAS  Google Scholar 

  3. Berridge MJ (1990) Calcium oscillations. J Biol Chem 265:9583–9586

    PubMed  CAS  Google Scholar 

  4. Bloomquist BT, Shortridge RD, Schneuwly S, Pedrew M, Montell C, Steller H, Rubin G, Pak WL (1988) Isolation of putative phospholipase C gene of Drosophila, norpA, and its role in phototransduction. Cell 54:723–733

    Article  PubMed  CAS  Google Scholar 

  5. Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389:816–824

    Article  PubMed  CAS  Google Scholar 

  6. Chyb S, Raghu P, Hardie RC (1999) Polyunsaturated fatty acids activate the Drosophila light-sensitive channels TRP and TRPL. Nature 397:255–259

    Article  PubMed  CAS  Google Scholar 

  7. Clapham DE (2003) TRP channels as cellular sensors. Nature 426:517–524

    Article  PubMed  CAS  Google Scholar 

  8. Cosens DJ, Manning A (1969) Abnormal electroretinogram from a Drosophila mutant. Nature 224:285–287

    Article  PubMed  CAS  Google Scholar 

  9. Devary O, Heichal O, Blumenfeld A, Cassel D, Suss E, Barash S, Rubinstein CT, Minke B, Selinger Z (1987) Coupling of photoexcited rhodopsin to inositol phospholipid hydrolysis in fly photoreceptors. Proc Natl Acad Sci USA 84:6939–6943

    Article  PubMed  CAS  Google Scholar 

  10. Feske S, Gwack Y, Prakriya M, Srikanth S, Puppel SH, Tanasa B, Hogan PG, Lewis RS, Daly M, Rao A (2006) A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 441:179–185

    Article  PubMed  CAS  Google Scholar 

  11. Gees M, Colsoul B, Nilius B (2010) The role of transient receptor potential cation channels in Ca2+ signaling. Cold Spring Harb Perspect Biol 2(10):a003962

    Article  PubMed  CAS  Google Scholar 

  12. Gu Y, Oberwinkler J, Postma M, Hardie RC (2005) Mechanisms of light adaptation in Drosophila photoreceptors. Curr Biol 15:1228–1234

    Article  PubMed  CAS  Google Scholar 

  13. Hardie RC (1991) Whole-cell recordings of the light-induced current in Drosophila photoreceptors: evidence for feedback by calcium permeating the light sensitive channels. Proc Roy Soc Lond B 245:203–210

    Article  Google Scholar 

  14. Hardie RC (1996) INDO-1 measurements of absolute resting and light-induced Ca2+ concentration in Drosophila photoreceptors. J Neurosci 16:2924–2933

    PubMed  CAS  Google Scholar 

  15. Hardie RC (2007) TRP channels and lipids: from Drosophila to mammalian physiology. J Physiol 578:9–25

    Article  PubMed  CAS  Google Scholar 

  16. Hardie RC, Gu Y, Martin F, Sweeney ST, Raghu P (2004) In vivo light-induced and basal phospholipase C activity in Drosophila photoreceptors measured with genetically targeted phosphatidylinositol 4, 5-bisphosphate-sensitive ion channels (Kir2.1). J Biol Chem 279:47773–47782

    Article  PubMed  CAS  Google Scholar 

  17. Hardie RC, Minke B (1992) The trp gene is essential for a light-activated Ca2+ channel in Drosophila photoreceptors. Neuron 8:643–651

    Article  PubMed  CAS  Google Scholar 

  18. Hardie RC, Raghu P, Moore S, Juusola M, Baines RA, Sweeney ST (2001) Calcium influx via TRP channels is required to maintain PIP2 levels in Drosophila photoreceptors. Neuron 30:149–159

    Article  PubMed  CAS  Google Scholar 

  19. Hardie RC, Reuss H, Lansdell SJ, Millar NS (1997) Functional equivalence of native light-sensitive channels in the Drosophila trp 301 mutant and TRPL cation channels expressed in a stably transfected Drosophila cell line. Cell Calcium 21:431–440

    Article  PubMed  CAS  Google Scholar 

  20. Hardie RC, Voss D, Pongs O, Laughlin SB (1991) Novel potassium channels encoded by the Shaker locus in Drosophila photoreceptors. Neuron 6:477–486

    Article  PubMed  CAS  Google Scholar 

  21. Henderson SR, Reuss H, Hardie RC (2000) Single photon responses in Drosophila photoreceptors and their regulation by Ca2+. J Physiol Lond 524:179–194

    Article  PubMed  CAS  Google Scholar 

  22. Hinman A, H-h C, Bautista DM, Julius D (2006) TRP channel activation by reversible covalent modification. PNAS 103:19564–19568

    Article  PubMed  CAS  Google Scholar 

  23. Hochstrate P (1989) Lanthanum mimicks the trp photoreceptor mutant of Drosophila in the blowfly Calliphora. J Comp Physiol A 166:179–187

    Article  PubMed  CAS  Google Scholar 

  24. Hofmann T, Obukhov AG, Schaefer M, Harteneck C, Gudermann T, Schultz G (1999) Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature 397:259–263

    Article  PubMed  CAS  Google Scholar 

  25. Hu Y, Vaca L, Zhu X, Birnbaumer L, Kunze DL, Schilling WP (1994) Appearance of a novel Ca2+ influx pathway in Sf9 insect cells following expression of the transient receptor potential-like (trpl) protein of Drosophila. Biochem Biophys Res Commun 201:1050–1056

    Article  PubMed  CAS  Google Scholar 

  26. Inoue H, Yoshioka T, Hotta Y (1985) A genetic study of inositol trisphosphate involvement in phototransduction using Drosophila mutants. Biochem Biophys Res Commun 132:513–519

    Article  PubMed  CAS  Google Scholar 

  27. Irvine RF (1990) ‘Quantal’ Ca2+ release and the control of Ca2+ entry by inositol phosphates–a possible mechanism. FEBS Lett 263:5–9

    Article  PubMed  CAS  Google Scholar 

  28. Irvine RF, Moor RM (1986) Micro-injection of inositol 1, 3, 4, 5-tetrakisphosphate activates sea urchin eggs by a mechanism dependent on external Ca2+. Biochem J 240:917–920

    PubMed  CAS  Google Scholar 

  29. Kang L, Gao J, Schafer WR, Xie Z, Xu XZ (2010) C. elegans TRP family protein TRP-4 is a pore-forming subunit of a native mechanotransduction channel. Neuron 67:381–391

    Article  PubMed  CAS  Google Scholar 

  30. Lan L, Bawden MJ, Auld AM, Barritt GJ (1996) Expression of Drosophila Trpl cRNA In Xenopus laevis oocytes leads to the appearance of a Ca2+ channel activated by Ca2+ and calmodulin, and by guanosine 5′[gamma-thio]triphosphate. Biochem J 316:793–803

    PubMed  CAS  Google Scholar 

  31. Liu CH, Wang T, Postma M, Obukhov AG, Montell C, Hardie RC (2007) In vivo identification and manipulation of the Ca2+ selectivity filter in the Drosophila transient receptor potential channel. J Neurosci 27:604–615

    Article  PubMed  CAS  Google Scholar 

  32. Minke B (1977) Drosophila mutant with a transducer defect. Biophys Struct Mech 3:59–64

    Article  PubMed  CAS  Google Scholar 

  33. Minke B (1982) Light-induced reduction in excitation efficiency in the trp mutant of Drosophila. J Gen Physiol 79:361–385

    Article  PubMed  CAS  Google Scholar 

  34. Minke B (2010) The history of the Drosophila TRP channel: the birth of a new channel superfamily. J Neurogenet 24:216–233

    Article  PubMed  CAS  Google Scholar 

  35. Minke B, Cook B (2002) TRP channel proteins and signal transduction. Physiol Rev 82:429–472

    PubMed  CAS  Google Scholar 

  36. Minke B, Selinger Z (1991) Inositol lipid pathway in fly photoreceptors: excitation, calcium mobilization and retinal degeneration. Prog Retinal Res 11:99–124

    Article  CAS  Google Scholar 

  37. Minke B, Wu C, Pak WL (1975) Induction of photoreceptor voltage noise in the dark in Drosophila mutant. Nature 258:84–87

    Article  PubMed  CAS  Google Scholar 

  38. Montell C (2005) The TRP superfamily of cation channels. Sci STKE 2005:re3

  39. Montell C, Rubin GM (1989) Molecular characterization of Drosophila trp locus, a putative integral membrane protein required for phototransduction. Neuron 2:1313–1323

    Article  PubMed  CAS  Google Scholar 

  40. Nagy K (1991) Biophysical processes in invertebrate photoreceptors: recent progress and a critical overview based on Limulus photoreceptors. Q Rev Biophys 24:165–226

    Article  PubMed  CAS  Google Scholar 

  41. Nasi E (1991) Two light-dependent conductances in Lima rhabdomeric photoreceptors. J Gen Physiol 97:55–72

    Article  PubMed  CAS  Google Scholar 

  42. Niemeyer BA, Suzuki E, Scott K, Jalink K, Zuker CS (1996) The Drosophila light-activated conductance is composed of the two channels TRP and TRPL. Cell 85:651–659

    Article  PubMed  CAS  Google Scholar 

  43. Nilius B, Owsianik G (2010) Transient receptor potential channelopathies. Pflugers Arch 460:437–450

    Article  PubMed  CAS  Google Scholar 

  44. Petersen CC, Berridge MJ, Borgese MF, Bennett DL (1995) Putative capacitative calcium entry channels: expression of Drosophila trp and evidence for the existence of vertebrate homologues. Biochem J 311(Pt 1):41–44

    PubMed  CAS  Google Scholar 

  45. Phillips AM, Bull A, Kelly LE (1992) Identification of a Drosophila gene encoding a calmodulin-binding protein with homology to the trp phototransduction gene. Neuron 8:631–642

    Article  PubMed  CAS  Google Scholar 

  46. Putney JW Jr (1986) A model for receptor-regulated calcium entry. Cell Calcium 7:1–12

    Article  PubMed  CAS  Google Scholar 

  47. Raghu P, Colley NJ, Webel R, James T, Hasan G, Danin M, Selinger Z, Hardie RC (2000) Normal phototransduction in Drosophila photoreceptors lacking an InsP3 receptor gene. Mol Cell Neurosci 15:429–445

    Article  PubMed  CAS  Google Scholar 

  48. Ramsey IS, Delling M, Clapham DE (2006) An introduction to TRP channels. Annu Rev Physiol 68:619–647

    Article  PubMed  CAS  Google Scholar 

  49. Ranganathan R, Bacskai BJ, Tsien RY, Zuker CS (1994) Cytosolic calcium transients: spatial localization and role in Drosophila photoreceptor cell function. Neuron 13:837–848

    Article  PubMed  CAS  Google Scholar 

  50. Ranganathan R, Harris GL, Stevens CF, Zuker CS (1991) A Drosophila mutant defective in extracellular calcium-dependent photoreceptor deactivation and rapid desensitization. Nature 354:230–232

    Article  PubMed  CAS  Google Scholar 

  51. Suss-Toby E, Selinger Z, Minke B (1991) Lanthanum reduces the excitation efficiency in fly photoreceptors. J Gen Physiol 98:849–868

    Article  PubMed  CAS  Google Scholar 

  52. Trebak M, Lemonnier L, Dehaven WI, Wedel BJ, Bird GS, Putney JW Jr (2009) Complex functions of phosphatidylinositol 4, 5-bisphosphate in regulation of TRPC5 cation channels. Pflugers Arch 457:757–769

    Article  PubMed  CAS  Google Scholar 

  53. Voets T, Droogmans G, Wissenbach U, Janssens A, Flockerzi V, Nilius B (2004) The principle of temperature-dependent gating in cold- and heat-sensitive TRP channels. Nature 430:748–754

    Article  PubMed  CAS  Google Scholar 

  54. Voets T, Talavera K, Owsianik G, Nilius B (2005) Sensing with TRP channels. Nat Chem Biol 1:85–92

    Article  PubMed  CAS  Google Scholar 

  55. Wes PD, Chevesich J, Jeromin A, Rosenberg C, Stetten G, Montell C (1995) TRPC1, a human homolog of a Drosophila store-operated channel. Proc Natl Acad Sci USA 92:9652–9656

    Article  PubMed  CAS  Google Scholar 

  56. Wheeler GL, Brownlee C (2008) Ca2+ signalling in plants and green algae–changing channels. Trends Plant Sci 13:506–514

    Article  PubMed  CAS  Google Scholar 

  57. Wong F, Schaefer EL, Roop BC, LaMendola JN, Johnson-Seaton D, Shao D (1989) Proper function of the Drosophila trp gene product during pupal development is important for normal visual transduction in the adult. Neuron 3:81–94

    Article  PubMed  CAS  Google Scholar 

  58. Xu SZ, Sukumar P, Zeng F, Li J, Jairaman A, English A, Naylor J, Ciurtin C, Majeed Y, Milligan CJ, Bahnasi YM, Al-Shawaf E, Porter KE, Jiang LH, Emery P, Sivaprasadarao A, Beech DJ (2008) TRPC channel activation by extracellular thioredoxin. Nature 451:69–72

    Article  PubMed  CAS  Google Scholar 

  59. Zeng W, Yuan JP, Kim MS, Choi YJ, Huang GN, Worley PF, Muallem S (2008) STIM1 gates TRPC channels, but not Orai1, by electrostatic interaction. Mol Cell 32:439–448

    Article  PubMed  CAS  Google Scholar 

  60. Zhu X, Chu PB, Peyton M, Birnbaumer L (1995) Molecular cloning of a widely expressed human homologue for the Drosophila trp gene. FEBS Lett 373:193–198

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger C. Hardie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hardie, R.C. A brief history of trp: commentary and personal perspective. Pflugers Arch - Eur J Physiol 461, 493–498 (2011). https://doi.org/10.1007/s00424-011-0922-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-011-0922-9

Keywords

Navigation