Skip to main content
Log in

Brainstem mechanisms of paradoxical (REM) sleep generation

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Paradoxical sleep (PS) is characterized by EEG activation with a disappearance of muscle tone and the occurrence of rapid eye movements (REM) in contrast to slow-wave sleep (SWS, also known as non-REM sleep) identified by the presence of delta waves. Soon after the discovery of PS, it was demonstrated that the structures necessary and sufficient for its genesis are restricted to the brainstem. We review here recent results indicating that brainstem glutamatergic and GABAergic, rather than cholinergic and monoaminergic, neurons play a key role in the genesis of PS. We hypothesize that the entrance to PS from SWS is due to the activation of PS-on glutamatergic neurons localized in the pontine sublaterodorsal tegmental nucleus. The activation of these neurons would be due to a permanent glutamatergic input arising from the lateral and ventrolateral periaqueductal gray (vlPAG) and the removal at the onset of PS of a GABAergic inhibition present during W and SWS. Such inhibition would be coming from PS-off GABAergic neurons localized in the vlPAG and the adjacent deep mesencephalic reticular nucleus. The cessation of activity of these PS-off GABAergic neurons at the onset and during PS would be due to direct projections from intermingled GABAergic PS-on neurons. Activation of PS would depend on the reciprocal interactions between the GABAergic PS-on and PS-off neurons, intrinsic cellular and molecular events, and integration of multiple physiological parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Aghajanian GK, Vandermaelen CP (1982) Intracellular identification of central noradrenergic and serotonergic neurons by a new double labeling procedure. J Neurosci 2:1786–1792

    PubMed  CAS  Google Scholar 

  2. Alam MN, Gong H, Alam T, Jaganath R, McGinty D, Szymusiak R (2002) Sleep–waking discharge patterns of neurons recorded in the rat perifornical lateral hypothalamic area. J Physiol 538:619–631

    PubMed  CAS  Google Scholar 

  3. Amatruda TT III, Black DA, McKenna TM, McCarley RW, Hobson JA (1975) Sleep cycle control and cholinergic mechanisms: differential effects of carbachol injections at pontine brain stem sites. Brain Res 98:501–515

    PubMed  CAS  Google Scholar 

  4. Aserinsky E, Kleitman N (1953) Regularly occurring periods of eye motility and concomitant phenomena during sleep. Science 118:273–274

    PubMed  CAS  Google Scholar 

  5. Aston-Jones G, Bloom FE (1981) Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep–waking cycle. J Neurosci 1:876–886

    PubMed  CAS  Google Scholar 

  6. Baghdoyan HA (1997) Cholinergic mechanisms regulating REM sleep. In: Schwartz WJ (ed) Sleep science: integrating basic research and clinical practice. S. Karger, Basel, pp 88–116

    Google Scholar 

  7. Baghdoyan HA, Rodrigo-Angulo ML, McCarley RW, Hobson JA (1984) Site-specific enhancement and suppression of desynchronized sleep signs following cholinergic stimulation of three brainstem regions. Brain Res 306:39–52

    PubMed  CAS  Google Scholar 

  8. Baghdoyan HA, Rodrigo-Angulo ML, McCarley RW, Hobson JA (1987) A neuroanatomical gradient in the pontine tegmentum for the cholinoceptive induction of desynchronized sleep signs. Brain Res 414:245–261

    PubMed  CAS  Google Scholar 

  9. Beitz AJ (1990) Relationship of glutamate and aspartate to the periaqueductal gray–raphe magnus projection: analysis using immunocytochemistry and microdialysis. J Histochem Cytochem 38:1755–1765

    PubMed  CAS  Google Scholar 

  10. Boissard R, Fort P, Gervasoni D, Barbagli B, Luppi PH (2003) Localization of the GABAergic and non-GABAergic neurons projecting to the sublaterodorsal nucleus and potentially gating paradoxical sleep onset. Eur J Neurosci 18:1627–1639

    PubMed  Google Scholar 

  11. Boissard R, Gervasoni D, Fort P, Henninot V, Barbagli B, Luppi PH (2000) Neuronal networks responsible for paradoxical sleep onset and maintenance in rats: a new hypothesis. Sleep 23(Suppl):107

    Google Scholar 

  12. Boissard R, Gervasoni D, Schmidt MH, Barbagli B, Fort P, Luppi PH (2002) The rat ponto-medullary network responsible for paradoxical sleep onset and maintenance: a combined microinjection and functional neuroanatomical study. Eur J Neurosci 16:1959–1973

    PubMed  Google Scholar 

  13. Bourgin P, Escourrou P, Gaultier C, Adrien J (1995) Induction of rapid eye movement sleep by carbachol infusion into the pontine reticular formation in the rat. Neuroreport 6:532–536

    PubMed  CAS  Google Scholar 

  14. Boutrel B, Franc B, Hen R, Hamon M, Adrien J (1999) Key role of 5-HT1B receptors in the regulation of paradoxical sleep as evidenced in 5-HT1B knock-out mice. J Neurosci 19:3204–3212

    PubMed  CAS  Google Scholar 

  15. Boutrel B, Monaca C, Hen R, Hamon M, Adrien J (2002) Involvement of 5-HT1A receptors in homeostatic and stress-induced adaptive regulations of paradoxical sleep: studies in 5-HT1A knock-out mice. J Neurosci 22:4686–4692

    PubMed  CAS  Google Scholar 

  16. Brooks PL, Peever JH (2008) Glycinergic and GABA(A)-mediated inhibition of somatic motoneurons does not mediate rapid eye movement sleep motor atonia. J Neurosci 28:3535–3545

    PubMed  CAS  Google Scholar 

  17. Brooks PL, Peever JH (2011) Impaired GABA and glycine transmission triggers cardinal features of rapid eye movement sleep behavior disorder in mice. J Neurosci 31(19):7111–7121

    Google Scholar 

  18. Carli G, Zanchetti A (1965) A study of pontine lesions suppressing deep sleep in the cat. Arch Ital Biol 103:751–788

    PubMed  CAS  Google Scholar 

  19. Chase MH (2008) Confirmation of the consensus that glycinergic postsynaptic inhibition is responsible for the atonia of REM sleep. Sleep 31:1487–1491, discussion 1492–1487

    PubMed  Google Scholar 

  20. Chase MH, Soja PJ, Morales FR (1989) Evidence that glycine mediates the postsynaptic potentials that inhibit lumbar motoneurons during the atonia of active sleep. J Neurosci 9:743–751

    PubMed  CAS  Google Scholar 

  21. Clement O, Sapin E, Berod A, Fort P, Luppi PH (2011) Evidence that neurons of the sublaterodorsal tegmental nucleus triggering paradoxical (REM) sleep are glutamatergic. Sleep 34:419–423

    PubMed  Google Scholar 

  22. Crochet S, Onoe H, Sakai K (2006) A potent non-monoaminergic paradoxical sleep inhibitory system: a reverse microdialysis and single-unit recording study. Eur J Neurosci 24:1404–1412

    PubMed  Google Scholar 

  23. Crochet S, Sakai K (1999) Alpha-2 adrenoceptor mediated paradoxical (REM) sleep inhibition in the cat. Neuroreport 10:2199–2204

    PubMed  CAS  Google Scholar 

  24. Crochet S, Sakai K (1999) Effects of microdialysis application of monoamines on the EEG and behavioural states in the cat mesopontine tegmentum. Eur J Neurosci 11:3738–3752

    PubMed  CAS  Google Scholar 

  25. Darracq L, Gervasoni D, Souliere F, Lin JS, Fort P, Chouvet G, Luppi PH (1996) Effect of strychnine on rat locus coeruleus neurones during sleep and wakefulness. Neuroreport 8:351–355

    PubMed  CAS  Google Scholar 

  26. Dement W, Kleitman N (1957) The relation of eye movements during sleep to dream activity: an objective method for the study of dreaming. J Exp Psychol Learn Mem Cogn 53:339–346

    CAS  Google Scholar 

  27. Deurveilher S, Hars B, Hennevin E (1997) Pontine microinjection of carbachol does not reliably enhance paradoxical sleep in rats. Sleep 20:593–607

    PubMed  CAS  Google Scholar 

  28. Ennis M, Aston-Jones G (1989) GABA-mediated inhibition of locus coeruleus from the dorsomedial rostral medulla. J Neurosci 9:2973–2981

    PubMed  CAS  Google Scholar 

  29. Fort P, Luppi PH, Jouvet M (1993) Glycine-immunoreactive neurones in the cat brain stem reticular formation. Neuroreport 4:1123–1126

    PubMed  CAS  Google Scholar 

  30. Fort P, Luppi PH, Wenthold R, Jouvet M (1990) Glycine immunoreactive neurons in the medulla oblongata in cats. C R Acad Sci III 311:205–212

    PubMed  CAS  Google Scholar 

  31. Garzon M, De Andres I, Reinoso-Suarez F (1998) Sleep patterns after carbachol delivery in the ventral oral pontine tegmentum of the cat. Neuroscience 83:1137–1144

    PubMed  CAS  Google Scholar 

  32. George R, Haslett WL, Jenden DJ (1964) A cholinergic mechanism in the brainstem reticular formation: induction of paradoxical sleep. Int J Neuropharmacol 3:541–552

    PubMed  CAS  Google Scholar 

  33. Gervasoni D, Darracq L, Fort P, Souliere F, Chouvet G, Luppi PH (1998) Electrophysiological evidence that noradrenergic neurons of the rat locus coeruleus are tonically inhibited by GABA during sleep. Eur J Neurosci 10:964–970

    PubMed  CAS  Google Scholar 

  34. Gervasoni D, Lin SC, Ribeiro S, Soares ES, Pantoja J, Nicolelis MA (2004) Global forebrain dynamics predict rat behavioral states and their transitions. J Neurosci 24:11137–11147

    PubMed  CAS  Google Scholar 

  35. Gervasoni D, Panconi E, Henninot V, Boissard R, Barbagli B, Fort P, Luppi PH (2002) Effect of chronic treatment with milnacipran on sleep architecture in rats compared with paroxetine and imipramine. Pharmacol Biochem Behav 73:557–563

    PubMed  CAS  Google Scholar 

  36. Gervasoni D, Peyron C, Rampon C, Barbagli B, Chouvet G, Urbain N, Fort P, Luppi PH (2000) Role and origin of the GABAergic innervation of dorsal raphe serotonergic neurons. J Neurosci 20:4217–4225

    PubMed  CAS  Google Scholar 

  37. Gnadt JW, Pegram GV (1986) Cholinergic brainstem mechanisms of REM sleep in the rat. Brain Res 384:29–41

    PubMed  CAS  Google Scholar 

  38. Goutagny R, Luppi PH, Salvert D, Gervasoni D, Fort P (2005) GABAergic control of hypothalamic melanin-concentrating hormone-containing neurons across the sleep–waking cycle. Neuroreport 16:1069–1073

    PubMed  CAS  Google Scholar 

  39. Goutagny R, Luppi PH, Salvert D, Lapray D, Gervasoni D, Fort P (2008) Role of the dorsal paragigantocellular reticular nucleus in paradoxical (rapid eye movement) sleep generation: a combined electrophysiological and anatomical study in the rat. Neuroscience 152:849–857

    PubMed  CAS  Google Scholar 

  40. Guyenet PG, Aghajanian GK (1979) ACh, substance P and met-enkephalin in the locus coeruleus: pharmacological evidence for independent sites of action. Eur J Pharmacol 53:319–328

    PubMed  CAS  Google Scholar 

  41. Hazra J (1970) Effect of hemicholinium-3 on slow wave and paradoxical sleep of cat. Eur J Pharmacol 11:395–397

    PubMed  CAS  Google Scholar 

  42. Hobson JA, McCarley RW, Wyzinski PW (1975) Sleep cycle oscillation: reciprocal discharge by two brainstem neuronal groups. Science 189:55–58

    PubMed  CAS  Google Scholar 

  43. Holmes CJ, Jones BE (1994) Importance of cholinergic, GABAergic, serotonergic and other neurons in the medial medullary reticular formation for sleep–wake states studied by cytotoxic lesions in the cat. Neuroscience 62:1179–1200

    PubMed  CAS  Google Scholar 

  44. Jones BE (1991) Noradrenergic locus coeruleus neurons: their distant connections and their relationship to neighboring (including cholinergic and GABAergic) neurons of the central gray and reticular formation. Prog Brain Res 88:15–30

    PubMed  CAS  Google Scholar 

  45. Jones BE (1991) Paradoxical sleep and its chemical/structural substrates in the brain. Neuroscience 40:637–656

    PubMed  CAS  Google Scholar 

  46. Jones BE, Bobillier P, Jouvet M (1969) Effect of destruction of neurons containing catecholamines of the mesencephalon on the wake–sleep cycle in cats. C R Seances Soc Biol Fil 163:176–180

    PubMed  CAS  Google Scholar 

  47. Jouvet M (1962) Recherches sur les structures nerveuses et les mécanismes responsables des différentes phases du sommeil physiologique. Arch Ital Biol 100:125–206

    PubMed  CAS  Google Scholar 

  48. Jouvet M (1965) The paradoxical phase of sleep. Int J Neurol 5:131–150

    PubMed  CAS  Google Scholar 

  49. Jouvet M (1972) The role of monoamines and acetylcholine-containing neurons in the regulation of the sleep–waking cycle. Ergeb Physiol 64:166–307

    PubMed  CAS  Google Scholar 

  50. Jouvet M, Michel F (1959) Corrélations électromyographiques du sommeil chez le chat décortiqué et mésencéphalique chronique. CR Soc Biol 153:422–425

    CAS  Google Scholar 

  51. Jouvet M, Michel F, Courjon J (1959) Sur un stade d’activité électrique cérébrale rapide au cours du sommeil physiologique. CR Seances Soc Biol 153:1024–1028

    CAS  Google Scholar 

  52. Kaur S, Saxena RN, Mallick BN (2001) GABAergic neurons in prepositus hypoglossi regulate REM sleep by its action on locus coeruleus in freely moving rats. Synapse 42:141–150

    PubMed  CAS  Google Scholar 

  53. Kodama T, Lai YY, Siegel JM (1998) Enhanced glutamate release during REM sleep in the rostromedial medulla as measured by in vivo microdialysis. Brain Res 780:178–181

    PubMed  CAS  Google Scholar 

  54. Kovacs KJ (1998) c-Fos as a transcription factor: a stressful (re)view from a functional map. Neurochem Int 33:287–297

    PubMed  CAS  Google Scholar 

  55. Koyama Y, Kayama Y (1993) Mutual interactions among cholinergic, noradrenergic and serotonergic neurons studied by ionophoresis of these transmitters in rat brainstem nuclei. Neuroscience 55:1117–1126

    PubMed  CAS  Google Scholar 

  56. Lai YY, Siegel JM (1990) Cardiovascular and muscle tone changes produced by microinjection of cholinergic and glutamatergic agonists in dorsolateral pons and medial medulla. Brain Res 514:27–36

    PubMed  CAS  Google Scholar 

  57. Lai YY, Siegel JM (1991) Pontomedullary glutamate receptors mediating locomotion and muscle tone suppression. J Neurosci 11:2931–2937

    PubMed  CAS  Google Scholar 

  58. Lee MG, Hassani OK, Jones BE (2005) Discharge of identified orexin/hypocretin neurons across the sleep–waking cycle. J Neurosci 25:6716–6720

    PubMed  CAS  Google Scholar 

  59. Leger L, Goutagny R, Sapin E, Salvert D, Fort P, Luppi PH (2008) Noradrenergic neurons expressing Fos during waking and paradoxical sleep deprivation in the rat. J Chem Neuroanat 37:149–157

    PubMed  Google Scholar 

  60. Leonard TO, Lydic R (1997) Pontine nitric oxide modulates acetylcholine release, rapid eye movement sleep generation, and respiratory rate. J Neurosci 17:774–785

    PubMed  CAS  Google Scholar 

  61. Liu R, Jolas T, Aghajanian G (2000) Serotonin 5-HT(2) receptors activate local GABA inhibitory inputs to serotonergic neurons of the dorsal raphe nucleus. Brain Research 873:34–45

    PubMed  CAS  Google Scholar 

  62. Lu J, Bjorkum AA, Xu M, Gaus SE, Shiromani PJ, Saper CB (2002) Selective activation of the extended ventrolateral preoptic nucleus during rapid eye movement sleep. J Neurosci 22:4568–4576

    PubMed  CAS  Google Scholar 

  63. Lu J, Sherman D, Devor M, Saper CB (2006) A putative flip-flop switch for control of REM sleep. Nature 441:589–594

    PubMed  CAS  Google Scholar 

  64. Luppi PH, Charlety PJ, Fort P, Akaoka H, Chouvet G, Jouvet M (1991) Anatomical and electrophysiological evidence for a glycinergic inhibitory innervation of the rat locus coeruleus. Neurosci Lett 128:33–36

    PubMed  CAS  Google Scholar 

  65. Luppi PH, Peyron C, Rampon C, Gervasoni D, Barbagli B, Boissard R, Fort P (1999) Inhibitory mechanisms in the dorsal raphe nucleus and locus coeruleus during sleep. In: Lydic R, Baghdoyan HA (eds) Handbook of behavioral state control. CRC, Boca Raton, pp 195–211

    Google Scholar 

  66. Luppi PH, Sakai K, Fort P, Salvert D, Jouvet M (1988) The nuclei of origin of monoaminergic, peptidergic, and cholinergic afferents to the cat nucleus reticularis magnocellularis: a double-labeling study with cholera toxin as a retrograde tracer. J Comp Neurol 277:1–20

    PubMed  CAS  Google Scholar 

  67. Maloney KJ, Mainville L, Jones BE (1999) Differential c-Fos expression in cholinergic, monoaminergic, and GABAergic cell groups of the pontomesencephalic tegmentum after paradoxical sleep deprivation and recovery. J Neurosci 19:3057–3072

    PubMed  CAS  Google Scholar 

  68. Maloney KJ, Mainville L, Jones BE (2000) c-Fos expression in GABAergic, serotonergic, and other neurons of the pontomedullary reticular formation and raphe after paradoxical sleep deprivation and recovery. J Neurosci 20:4669–4679

    PubMed  CAS  Google Scholar 

  69. McCarley RW, Hobson JA (1971) Single neuron activity in cat gigantocellular tegmental field: selectivity of discharge in desynchronized sleep. Science 174:1250–1252

    PubMed  CAS  Google Scholar 

  70. McCarley RW, Hobson JA (1975) Neuronal excitability modulation over the sleep cycle: a structural and mathematical model. Science 189:58–60

    PubMed  CAS  Google Scholar 

  71. McGinty DJ, Harper RM (1976) Dorsal raphe neurons: depression of firing during sleep in cats. Brain Res 101:569–575

    PubMed  CAS  Google Scholar 

  72. Mileykovskiy BY, Kiyashchenko LI, Siegel JM (2005) Behavioral correlates of activity in identified hypocretin/orexin neurons. Neuron 46:787–798

    PubMed  CAS  Google Scholar 

  73. Monaca C, Boutrel B, Hen R, Hamon M, Adrien J (2003) 5-HT 1A/1B receptor-mediated effects of the selective serotonin reuptake inhibitor, citalopram, on sleep: studies in 5-HT 1A and 5-HT 1B knockout mice. Neuropsychopharmacology 28:850–856

    PubMed  CAS  Google Scholar 

  74. Nitz D, Siegel J (1997) GABA release in the dorsal raphe nucleus: role in the control of REM sleep. Am J Physiol 273:R451–R455

    PubMed  CAS  Google Scholar 

  75. Nitz D, Siegel JM (1997) GABA release in the locus coeruleus as a function of sleep/wake state. Neuroscience 78:795–801

    PubMed  CAS  Google Scholar 

  76. Onoe H, Sakai K (1995) Kainate receptors: a novel mechanism in paradoxical (REM) sleep generation. Neuroreport 6:353–356

    PubMed  CAS  Google Scholar 

  77. Pollock MS, Mistlberger RE (2003) Rapid eye movement sleep induction by microinjection of the GABA-A antagonist bicuculline into the dorsal subcoeruleus area of the rat. Brain Research 962:68–77

    PubMed  CAS  Google Scholar 

  78. Sakai K (1985) Neurons responsible for paradoxical sleep. In: Wauquier A, Janssen Research Foundation (eds) Sleep: neurotransmitters and neuromodulators. Raven, New York, pp 29–42

    Google Scholar 

  79. Sakai K, Crochet S, Onoe H (2001) Pontine structures and mechanisms involved in the generation of paradoxical (REM) sleep. Arch Ital Biol 139:93–107

    PubMed  CAS  Google Scholar 

  80. Sakai K, Kanamori N, Jouvet M (1979) Neuronal activity specific to paradoxical sleep in the bulbar reticular formation in the unrestrained cat. C R Seances Acad Sci D 289:557–561

    PubMed  CAS  Google Scholar 

  81. Sakai K, Koyama Y (1996) Are there cholinergic and non-cholinergic paradoxical sleep-on neurones in the pons? Neuroreport 7:2449–2453

    PubMed  CAS  Google Scholar 

  82. Sakai K, Sastre JP, Kanamori N, Jouvet M (1981) State-specific neurones in the ponto-medullary reticular formation with special reference to the postural atonia during paradoxical sleep in the cat. In: Pompeiano O, Aimone Marsan C (eds) Brain mechanisms of perceptual awareness and purposeful behavior. Raven, New York, pp 405–429

    Google Scholar 

  83. Sanford LD, Tang X, Xiao J, Ross RJ, Morrison AR (2003) GABAergic regulation of REM sleep in reticularis pontis oralis and caudalis in rats. J Neurophysiol 90:938–945

    PubMed  CAS  Google Scholar 

  84. Sapin E, Lapray D, Berod A, Goutagny R, Leger L, Ravassard P, Clement O, Hanriot L, Fort P, Luppi PH (2009) Localization of the brainstem GABAergic neurons controlling paradoxical (REM) sleep. PLoS One 4:e4272

    PubMed  Google Scholar 

  85. Sastre JP, Buda C, Kitahama K, Jouvet M (1996) Importance of the ventrolateral region of the periaqueductal gray and adjacent tegmentum in the control of paradoxical sleep as studied by muscimol microinjections in the cat. Neuroscience 74:415–426

    PubMed  CAS  Google Scholar 

  86. Sastre JP, Buda C, Lin JS, Jouvet M (2000) Differential c-fos expression in the rhinencephalon and striatum after enhanced sleep–wake states in the cat. Eur J Neurosci 12:1397–1410

    PubMed  CAS  Google Scholar 

  87. Sastre JP, Sakai K, Jouvet M (1981) Are the gigantocellular tegmental field neurons responsible for paradoxical sleep? Brain Res 229:147–161

    PubMed  CAS  Google Scholar 

  88. Shiromani PJ, Fishbein W (1986) Continuous pontine cholinergic microinfusion via mini-pump induces sustained alterations in rapid eye movement (REM) sleep. Pharmacol Biochem Behav 25:1253–1261

    PubMed  CAS  Google Scholar 

  89. Shiromani PJ, Winston S, McCarley RW (1996) Pontine cholinergic neurons show Fos-like immunoreactivity associated with cholinergically induced REM sleep. Brain Res Mol Brain Res 38:77–84

    PubMed  CAS  Google Scholar 

  90. Takahashi K, Lin JS, Sakai K (2006) Neuronal activity of histaminergic tuberomammillary neurons during wake-sleep states in the mouse. J Neurosci 26:10292–10298

    PubMed  CAS  Google Scholar 

  91. Tononi G, Pompeiano M, Cirelli C (1991) Suppression of desynchronized sleep through microinjection of the alpha 2-adrenergic agonist clonidine in the dorsal pontine tegmentum of the cat. Pflugers Arch 418:512–518

    PubMed  CAS  Google Scholar 

  92. Vanni-Mercier G, Sakai K, Jouvet M (1984) Specific neurons for wakefulness in the posterior hypothalamus in the cat. C R Acad Sci III 298:195–200

    PubMed  CAS  Google Scholar 

  93. Vanni-Mercier G, Sakai K, Lin JS, Jouvet M (1989) Mapping of cholinoceptive brainstem structures responsible for the generation of paradoxical sleep in the cat. Arch Ital Biol 127:133–164

    PubMed  CAS  Google Scholar 

  94. Velazquez-Moctezuma J, Gillin JC, Shiromani PJ (1989) Effect of specific M1, M2 muscarinic receptor agonists on REM sleep generation. Brain Res 503:128–131

    PubMed  CAS  Google Scholar 

  95. Verret L, Fort P, Gervasoni D, Leger L, Luppi PH (2006) Localization of the neurons active during paradoxical (REM) sleep and projecting to the locus coeruleus noradrenergic neurons in the rat. J Comp Neurol 495:573–586

    PubMed  CAS  Google Scholar 

  96. Verret L, Fort P, Luppi PH (2003) Localization of the neurons responsible for the inhibition of locus coeruleus noradrenergic neurons during paradoxical sleep in the rat. Sleep 26:69

    Google Scholar 

  97. Verret L, Leger L, Fort P, Luppi PH (2005) Cholinergic and noncholinergic brainstem neurons expressing Fos after paradoxical (REM) sleep deprivation and recovery. Eur J Neurosci 21:2488–2504

    PubMed  Google Scholar 

  98. Vetrivelan R, Fuller PM, Tong Q, Lu J (2009) Medullary circuitry regulating rapid eye movement sleep and motor atonia. J Neurosci 29:9361–9369

    PubMed  CAS  Google Scholar 

  99. Webster HH, Jones BE (1988) Neurotoxic lesions of the dorsolateral pontomesencephalic tegmentum-cholinergic cell area in the cat. II. Effects upon sleep–waking states. Brain Res 458:285–302

    PubMed  CAS  Google Scholar 

  100. Woch G, Davies RO, Pack AI, Kubin L (1996) Behaviour of raphe cells projecting to the dorsomedial medulla during carbachol-induced atonia in the cat. J Physiol 490(Pt 3):745–758

    PubMed  CAS  Google Scholar 

  101. Xi MC, Morales FR, Chase MH (1999) Evidence that wakefulness and REM sleep are controlled by a GABAergic pontine mechanism. J Neurophysiol 82:2015–2019

    PubMed  CAS  Google Scholar 

  102. Xi MC, Morales FR, Chase MH (2001) The motor inhibitory system operating during active sleep is tonically suppressed by GABAergic mechanisms during other states. J Neurophysiol 86:1908–1915

    PubMed  CAS  Google Scholar 

  103. Yamamoto K, Mamelak AN, Quattrochi JJ, Hobson JA (1990) A cholinoceptive desynchronized sleep induction zone in the anterodorsal pontine tegmentum: locus of the sensitive region. Neuroscience 39:279–293

    PubMed  CAS  Google Scholar 

  104. Yamuy J, Sampogna S, Morales FR, Chase MH (1998) c-fos expression in mesopontine noradrenergic and cholinergic neurons of the cat during carbachol-induced active sleep: a double-labeling study. Sleep Res Online 1:28–40

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by CNRS and Université Claude Bernard Lyon.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre-Hervé Luppi.

Additional information

This article is published as part of the Special Issue on Sleep.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luppi, PH., Clement, O., Sapin, E. et al. Brainstem mechanisms of paradoxical (REM) sleep generation. Pflugers Arch - Eur J Physiol 463, 43–52 (2012). https://doi.org/10.1007/s00424-011-1054-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-011-1054-y

Keywords

Navigation