Skip to main content
Log in

Microsaccadic responses in a bimodal oddball task

  • Original Article
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

In a visual oddball task the presentation of rare targets induces a prolonged microsaccadic inhibition as compared to standards. Here, we replicated this effect also in the auditory modality. In addition, although auditory standards induced a more limited modulation of microsaccadic frequency as compared to visual standards, auditory oddballs induced a prolonged microsaccadic inhibition. With bimodal standard stimuli the microsaccadic response was determined by the attended modality, resembling that produced by attended unimodal stimuli. The present findings support the idea that the microsaccadic response to oddball and standard stimuli is partly driven by cognitive mechanisms common to both the visual and the auditory modality, and that microsaccades can be used as an implicit behavioral measure of ongoing cognitive processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Benjamini, Y., & Yekutieli, D. (2001). The control of the false discovery rate in multiple testing under dependency. Annals of Statistics, 29, 1165–1188.

    Article  Google Scholar 

  • Bennington, J.Y., & Polich, J. (1999). Comparison of P300 from passive and active tasks for auditory and visual stimuli. International Journal of Psychophysiology, 34, 171–177.

    Article  PubMed  Google Scholar 

  • Besle, J., Fort, A., & Giard, M. H. (2005). Is the auditory sensory memory sensitive to visual information? Experimental Brain Research, 166, 337–344.

    Article  Google Scholar 

  • Betta, E., & Turatto, M. (2006). Are you ready? I can tell by looking at your microsaccades. Neuroreport, 17, 1001–1004.

    Article  PubMed  Google Scholar 

  • Betta, E., Galfano, G., & Turatto, M. (2007). Microsaccadic response during inhibition of return in a target-target paradigm. Vision Research, 47, 428–436.

    Article  PubMed  Google Scholar 

  • Brainard, D.H. (1997). The psychophysics toolbox. Spatial Vision, 10, 433–436.

    Article  PubMed  Google Scholar 

  • Bridgeman, B. (1998). Durations of stimuli displayed on video display terminals: (n − 1)/f + Persistence. Psychological Science, 9, 232–233.

    Article  Google Scholar 

  • Brown, C. R., Clarke, A. R., & Barry, R. J. (2006). Inter-modal attention: ERPs to auditory targets in an inter-modal oddball task. International Journal of Psychophysiology, 62, 77–86.

    Article  PubMed  Google Scholar 

  • Brown, C. R., Clarke, A. R., & Barry, R. J. (2007). Auditory processing in an inter-modal oddball task: effects of a combined auditory/visual standard on auditory target ERPs. International Journal of Psychophysiology, 65, 122–131.

    Article  PubMed  Google Scholar 

  • Busse, L., Roberts, K. C., Crist, R. E., Weissman, D. H., & Woldorff, M. G. (2005). The spread of attention across modalities and space in a multisensory object. Proceedings of the National Academy of Sciences of the USA, 102, 18751–18756.

    Article  PubMed  Google Scholar 

  • Cornsweet, T. N. (1956). Determination of the stimuli for involuntary drifts and saccadic eye movements. Journal of the Optical Society of America, 46, 987–993.

    Article  PubMed  Google Scholar 

  • Ditchburn, R. W. (1980). The function of small saccades. Vision Research, 20, 271–272.

    Article  PubMed  Google Scholar 

  • Ditchburn, R. W., Fender, D. H., & Mayne, S. (1959). Vision with controlled movements of the retinal image. Journal of Physiology (London), 145, 98–107.

    Google Scholar 

  • Donchin, E., & Coles, M. G. H. (1988). Is the P300 component a manifestation of context updating? Behavioral and Brain Sciences, 11, 357–427.

    Google Scholar 

  • Engbert, R. (2006). Microsaccades: a microcosm for research on oculomotor control, attention, and visual perception. Progress in Brain Research, 154, 179–194.

    Article  Google Scholar 

  • Engbert, R., & Kliegl, R. (2003). Microsaccades uncover the orientation of covert attention. Vision Research, 43, 1035–1045.

    Article  PubMed  Google Scholar 

  • Engbert, R., & Kliegl, R. (2004). Microsaccades keep the eyes’ balance during fixation. Psychological Science, 15, 431–436.

    Article  PubMed  Google Scholar 

  • Engbert, R., & Mergenthaler, K. (2006). Microsaccades are triggered by low retinal slip. Proceedings of the National Academy of Sciences of the USA, 103, 7192–8197.

    Article  PubMed  Google Scholar 

  • Galfano, G., Betta, E., & Turatto, M. (2004). Inhibition of return in microsaccades. Experimental Brain Research, 159, 400–404.

    Article  Google Scholar 

  • Gescheider, G. A. (1988). Psychophysical scaling. Annual Reviews of Psychology, 39, 169–200.

    Article  Google Scholar 

  • Hafed, Z. M., & Clark, J. J. (2002). Microsaccades as an overt measure of covert attention shifts. Vision Research, 42, 2533–2545.

    Article  PubMed  Google Scholar 

  • Hillyard, S. A., Hink, R. F., Schwent, V. L., & Picton, T. W. (1973). Electrical signs of selective attention in the human brain. Science, 182, 177–180.

    Article  PubMed  Google Scholar 

  • Horowitz, T. S., Fine, E. M., Fencsik, D. E., Yurgenson, S., & Wolfe, J. M. (2007). Fixational eye movements are not an index of covert attention. Psychological Science, 18, 356–363.

    Article  PubMed  Google Scholar 

  • Jiang, W., Wallace, M. T., Jiang, H., Vaughan, J. W., & Stein, B. E. (2001). Two cortical areas mediate multisensory integration in superior collicuclus neurons. Journal of Neurophysiology, 85, 506–522.

    PubMed  Google Scholar 

  • Katayama, J., & Polich, J. (1999). Auditory and visual P300 topography from a 3 stimulus paradigm. Clinical Neurophysiology, 110, 463–468.

    Article  PubMed  Google Scholar 

  • Kok, A. (2001). On the utility of P3 amplitude as a measure of processing capacity. Psychophysiology, 38, 557–577.

    Article  PubMed  Google Scholar 

  • Kowler, E., & Steinman, R. M. (1980). Small saccades serve no useful purpose: reply to a letter by R.W. Ditchburn. Vision Research, 20, 273–276.

    Article  PubMed  Google Scholar 

  • Laubrock, J., Engbert, R., & Kliegl, R. (2005). Microsaccade dynamics during covert attention. Vision Research, 45, 721–730.

    Article  PubMed  Google Scholar 

  • Laubrock, J., Engbert, R., Rolfs, M., & Kliegl, R. (2007). Microsaccades are an index of covert attention: commentary on Horowitz, Fine, Fencsik, Yurgenson, and Wolfe (2007). Psychological Science, 18, 364–366.

    Article  PubMed  Google Scholar 

  • Marks, L. E., Szczesiul, R., & Ohlott, P. (1986). On the cross-modal perception of intensity. Journal of Experimental Psychology: Human Perception and Performance, 12, 517–534.

    Article  PubMed  Google Scholar 

  • Martinez-Conde, S., Macknik, S. L., & Hubel, D. H. (2000). Microsaccadic eye movements and firing of single cells in the striate cortex of macaque monkeys. Nature Neuroscience, 3, 251–258.

    Article  PubMed  Google Scholar 

  • Martinez-Conde, S., Macknik, S. L., & Hubel, D. H. (2002). The function of bursts of spikes during visual fixation in the awake primate lateral geniculate nucleus and primary visual cortex. Proceedings of the National Academy of Sciences of the USA, 99, 13920–13925.

    Article  PubMed  Google Scholar 

  • Martinez-Conde, S., Macknik, S. L., & Hubel, D. H. (2004). The role of fixational eye movements in visual perception. Nature Reviews Neuroscience, 5, 229–240.

    Article  PubMed  Google Scholar 

  • Martinez-Conde, S., Macknik, S. L., Troncoso, X. G., & Dyar, T. A. (2006). Microsaccades counteract visual fading during fixation. Neuron, 49, 297–305.

    Article  PubMed  Google Scholar 

  • Mergenthaler, K., & Engbert, R. (2007). Modeling the control of fixational eye movements with neurophysiological delays. Physical Review Letters, 98, 138104.

    Article  PubMed  Google Scholar 

  • Näätänen, R., Gaillard, A. W. K., & Mäntysalo, S. (1978). Early selective-attention effect on evoked potential reinterpreted. Acta Psychologica, 42, 313–329.

    Article  PubMed  Google Scholar 

  • Perrault, T. J., Vaughan, J. W., Stein, B. E., & Wallace, M. T. (2005). Superior colliculus neurons use distinct operational modes in the integration of multisensory stimuli. Journal of Neurophysiology, 93, 2575–2586.

    Article  PubMed  Google Scholar 

  • Robinson, D. A. (1972). Eye movements evoked by collicular stimulation in the alert monkey. Vision Research, 12, 1795–1808.

    Article  PubMed  Google Scholar 

  • Rolfs, M., Engbert, R., & Kliegl, R. (2004). Microsaccade orientation supports attentional enhancement opposite to a peripheral cue: commentary on Tse, Sheinberg and Logothetis. Psychological Science, 15, 705–707.

    Article  PubMed  Google Scholar 

  • Rolfs, M., Engbert, R., & Kliegl, R. (2005). Crossmodal coupling of oculomotor control and spatial attention in vision and audition. Experimental Brain Research, 166, 427–439.

    Article  Google Scholar 

  • Rolfs, M., Laubrock, J., & Kliegl, R. (2006). Shortening and prolongation of saccade latencies following microsaccades. Experimental Brain Research, 169, 369–376.

    Article  Google Scholar 

  • Sparks, D. L. (1986). Translation of sensory signals into commands for control of saccadic eye movements: role of primate superior colliculus. Physiological Reviews, 66, 118–171.

    PubMed  Google Scholar 

  • Stein, B. E., Wallace, M. W., Stanford, T. R., & Jiang, W. (2002). Cortex governs multisensory integration in the midbrain. The Neuroscientist, 8, 306–314.

    Article  PubMed  Google Scholar 

  • Steinman, R. M., Haddad, G. M., Skavenski, A. A., & Wyman, D. (1973). Miniature eye movement. Science, 181, 810–819.

    Article  PubMed  Google Scholar 

  • Turatto, M., Valsecchi, M., Tamè, L., & Betta, E. (2007). Microsaccades distinguish between global and local visual processing. Neuroreport, 18, 1015–1018.

    Article  PubMed  Google Scholar 

  • Ulrich, R., & Miller, J. (2001). Using the jackknife-based scoring method for measuring LRP onset effects in factorial designs. Psychophysiology, 38, 816–827.

    Article  PubMed  Google Scholar 

  • Valsecchi, M., & Turatto, M. (2007). Microsaccadic response to visual events that are invisible to the Superior Colliculus. Behavioral Neuroscience, 121, 786–793.

    Article  PubMed  Google Scholar 

  • Valsecchi, M., Betta, E., & Turatto, M. (2007). Visual oddballs induce prolonged microsaccadic inhibition. Experimental Brain Research, 177, 196–208.

    Article  Google Scholar 

  • Verleger, R. (1988). Event-related potentials and cognition: a critique of the context updating hypothesis and an alternative interpretation of P3. Behavioral and Brain Sciences, 11, 343–356.

    Article  Google Scholar 

  • Wallace, M. T., Meredith, M. A., & Stein, B. E. (1993). Converging evidence from visual, auditory, and somatosensory cortices onto output neurons of the superior colliculus. Journal of Neurophysiology, 69, 1797–1809.

    PubMed  Google Scholar 

  • Wyszecki, G., & Stiles, W. S. (1982). Color science: concepts and methods, quantitative data and formulae. (2nd ed.) New York: John Wiley & Sons, Inc.

    Google Scholar 

  • Zuber, B. L., Stark, L., & Cook, M. (1965). Microsaccades and the velocity-amplitude relationship for saccadic eye movements. Science, 150, 1459–1460.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Valsecchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valsecchi, M., Turatto, M. Microsaccadic responses in a bimodal oddball task. Psychological Research 73, 23–33 (2009). https://doi.org/10.1007/s00426-008-0142-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-008-0142-x

Keywords

Navigation