Skip to main content
Log in

Conservation of novel Mahya genes shows the existence of neural functions common between Hymenoptera and Deuterostome

  • Original Article
  • Published:
Development Genes and Evolution Aims and scope Submit manuscript

Abstract

Honeybees have been shown to exhibit cognitive performances that were thought to be specific to some vertebrates. However, the molecular and cellular mechanisms of such cognitive abilities of the bees have not been understood. We have identified a novel gene, Mahya, expressed in the brain of the honeybee, Apis mellifera, and other Hymenoptera. Mahya orthologues are present in Deuterostomes but are absent or highly diverged in nematodes and, intriguingly, in two dipteran insects (fruit fly and mosquito) and Lepidoptera (silk moth). Mahya genes encode novel secretory proteins with a follistatin-like domain (Kazal-type serine/threonine protease inhibitor domain and EF-hand calcium-binding domain), two immunoglobulin domains, and a C-terminal novel domain. Honeybee Mahya is expressed in the mushroom bodies and antennal lobes of the brain. Zebra fish Mahya orthologues are expressed in the olfactory bulb, telencephalon, habenula, optic tectum, and cerebellum of the brain. Mouse Mahya orthologues are expressed in the olfactory bulb, hippocampus, and cerebellum of the brain. These results suggest that Mahya may be involved in learning and memory and in processing of sensory information in Hymenoptera and vertebrates. Furthermore, the limited existence of Mahya in the genomes of Hymenoptera and Deuterostomes supports the hypothesis that the genes typically represented by Mahya were lost or highly diverged during the evolution of the central nervous system of specific Bilaterian branches under the specific selection and subsequent adaptation associated with different ecologies and life histories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ashburner M (1989) Drosophila a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Balemans W, Hul WV (2002) Extracellular regulation of BMP signaling in vertebrates: a cocktail of modulators. Dev Biol 250:231–250

    Article  PubMed  CAS  Google Scholar 

  • Carpenter FM, Burnham L (1985) The geological record of insects. Annu Rev Earth Planet Sci 13:297–314

    Article  Google Scholar 

  • Datta S, Mori Y, Takagi K, Kawaguchi K, Chen ZW, Okajima T, Kuroda S, Ikeda T, Kano K, Tanizawa K, Mathews FS (2001) Structure of a quinohemoprotein amine dehydrogenase with an uncommon redox cofactor and highly unusual crosslinking. Proc Natl Acad Sci U S A 98:14268–14273

    Article  PubMed  CAS  Google Scholar 

  • Fahrbach SE, Robinson GE (1995) Behavioral development in the honey bee: toward the study of learning under natural conditions. Learn Mem 2:199–224

    Article  PubMed  CAS  Google Scholar 

  • Funada M, Yasuo S, Yoshimura T, Ebihara S, Sasagawa H, Kitagawa Y, Kadowaki T (2004) Characterization of the two distinct subtypes of metabotropic glutamate receptor from honeybee, Apis mellifera. Neurosci Lett 359:190–194

    Article  PubMed  CAS  Google Scholar 

  • Giurfa M, Zhang S, Jenett A, Menzel R, Srinivasan MV (2001) The concepts of ‘sameness’ and ‘difference’ in an insect. Nature 410:930–933

    Article  PubMed  CAS  Google Scholar 

  • Ishihara A, Saito H, Abe K (1994) Transforming growth factor-beta 1 and -beta 2 promote neurite sprouting and elongation of cultured rat hippocampal neurons. Brain Res 639:21–25

    Article  PubMed  CAS  Google Scholar 

  • Kikuno R, Nagase T, Nakayama M, Koga H, Okazaki N, Nakajima D, Ohara O (2004) HUGE: a database for human KIAA proteins, a 2004 update integrating HUGEppi and ROUGE. Nucleic Acids Res 32(database issue):D502–D504

    Article  PubMed  CAS  Google Scholar 

  • Kortschak RD, Samuel G, Saint R, Miller DJ (2003) EST analysis of the Cnidarian Acropora millepora reveals extensive gene loss and rapid sequence divergence in the model invertebrates. Curr Biol 13:2190–2195

    Article  PubMed  CAS  Google Scholar 

  • Menzel R, Giurfa M (2001) Cognitive architecture of a mini-brain: the honeybee. Trends Cogn Sci 5:62–71

    Article  PubMed  Google Scholar 

  • Menzel R, Muller U (1996) Learning and memory in honeybees: from behavior to neural substrates. Annu Rev Neurosci 19:379–404

    Article  PubMed  CAS  Google Scholar 

  • Mineta K, Nakazawa M, Cebria F, Ikeo K, Agata K, Gojobori T (2003) Origin and evolutionary process of the CNS elucidated by comparative genomics analysis of planarian ESTs. Proc Natl Acad Sci U S A 100:7666–7671

    Article  PubMed  Google Scholar 

  • Mushegian AR, Garey JR, Martin J, Liu LX (1998) Large-scale taxonomic profiling of eukaryotic model organisms: a comparison of orthologous proteins encoded by the human, fly, nematode, and yeast genomes. Genome Res 8:590–598

    PubMed  CAS  Google Scholar 

  • Portavella M, Torres B, Salas C (2004) Avoidance response in gold fish: emotional and temporal involvement of medial and lateral telencephalic pallium. J Neurosci 24:2335–2342

    Article  PubMed  CAS  Google Scholar 

  • Prechtl JC, von der Emde G, Wolfart J, Karamursel S, Akoev GN, Andrianov YN, Bullock TH (1998) Sensory processing in the pallium of a mormyrid fish. J Neurosci 18:7381–7393

    PubMed  CAS  Google Scholar 

  • Sacchetti B, Baldi E, Lorenzini CA, Bucherelli C (2002) Cerebellar role in fear-conditioning consolidation. Proc Natl Acad Sci U S A 99:8406–8411

    Article  PubMed  CAS  Google Scholar 

  • Shi Y, Massague J (2003) Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113:685–700

    Article  PubMed  CAS  Google Scholar 

  • Tsuchimoto M, Aoki M, Takada M, Kanou Y, Sasagawa H, Kitagawa Y, Kadowaki T (2004) The changes of gene expression in honeybee (Apis mellifera) brains associated with ages. Zoolog Sci 21:23–28

    Article  PubMed  CAS  Google Scholar 

  • Whitfield CW, Brand MR, Bonaldo MF, Kumar CG, Liu L, Pardinas JR, Robertson HM, Soares MB, Robinson GE (2002) Annotated expressed sequence tags and cDNA microarrays for studies of brain and behavior in the honey bee. Genome Res 12:555–566

    Article  PubMed  Google Scholar 

  • Yanez J, Anadon R (1996) Afferent and efferent connections of the habenula in the rainbow trout (Oncorhynchus mykiss): an indocarbocyanine dye (Dil) study. J Comp Neurol 372:529–543

    Article  PubMed  CAS  Google Scholar 

  • Yoshida M, Okamura I, Uematsu K (2004) Involvement of the cerebellum in classical fear conditioning in gold fish. Behav Brain Res 153:143–148

    Article  PubMed  Google Scholar 

  • Yoshimoto M, Ito H (1993) Cytoarchitecture, fiber connections, and ultrastructure of the nucleus pretectalis superficialis pars magnocellularis (PSm) in carp. J Comp Neurol 336:433–446

    Article  PubMed  CAS  Google Scholar 

  • Yoshimura T, Suzuki Y, Makino E, Suzuki T, Kuroiwa A, Matsuda Y, Namikawa T, Ebihara S (2000) Molecular analysis of avian circadian clock genes. Brain Res Mol Brain Res 78:207–215

    Article  PubMed  CAS  Google Scholar 

  • Zdobnov EM, von Mering C, Letunic I, Torrents D, Suyama M, Copley RR, Christophides GK, Thomasova D, Holt RA, Subramanian GM, Mueller H-M, Dimopoulos G, Law JH, Wells MA, Birney E, Charlab R, Halpern AL, Kokoza E, Kraft CL, Lai Z, Lewis S, Louis C, Barillas-Mury C, Nusskern D, Rubin GM, Salzberg SL, Sutton GG, Topalis P, Wides R, Wincker P, Yandell M, Collins FH, Ribeiro J, Gelbart WM, Kafatos FC, Bork P (2002) Comparative genome and proteome analysis of Anopheles gambiae and Drosophila melanogaster. Science 298:149–159

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Mizunami for helpful discussion. This study was supported by Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science to T.K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsuhiko Kadowaki.

Additional information

Communicated by C. Desplan

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsuchimoto, M., Yasuo, S., Funada, M. et al. Conservation of novel Mahya genes shows the existence of neural functions common between Hymenoptera and Deuterostome. Dev Genes Evol 215, 564–574 (2005). https://doi.org/10.1007/s00427-005-0021-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00427-005-0021-z

Keywords

Navigation