Skip to main content
Log in

Differential topography of the bilateral cortical projections to the whisker and forepaw regions in rat motor cortex

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Whisker and forelimb movements in rats have distinct behavioral functions that suggest differences in the neural connections of the brain regions that control their movements. To test this hypothesis, retrograde tracing methods were used to characterize the bilateral distribution of the cortical neurons that project to the whisker and forelimb regions in primary motor (MI) cortex. Tracer injections in each MI region revealed labeled neurons in more than a dozen cortical areas, but most labeling was concentrated in the sensorimotor areas. Cortical projections to the MI forepaw region originated primarily from the primary somatosensory (SI) cortex in the ipsilateral hemisphere. In contrast, most projections to the MI whisker region originated from the MI whisker region in the contralateral hemisphere. Tracer injections in the MI whisker region also revealed a higher proportion of labeled neurons in the claustrum and in the posterior parietal cortex. Injections of different tracers into the MI whisker and forepaw regions of some rats revealed a topographic organization of neuronal labeling in several sensorimotor regions. Collectively, these findings indicate that the MI whisker and forepaw regions receive different sets of cortical inputs. Whereas the MI whisker region is most strongly influenced by callosal projections, presumably to mediate bilateral coordination of the whiskers, the MI forepaw region is influenced mainly by ipsilateral SI inputs that convey somatosensory feedback.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

AC:

Auditory cortex

Agl:

Lateral agranular cortex

Agm:

Medial agranular cortex

CG:

Cingulate cortex

CS:

Claustrum

EC:

Entorhinal cortex

ICMS:

Intracranial microstimulation

MI:

Primary motor cortex

PPC:

Posterior parietal cortex

PR:

Perirhinal cortex

PV:

Parietal ventral cortex

Rf:

Rhinal fissure

RS:

Retrosplenial cortex

RW:

Rhythmic whisking

SI:

Primary somatosensory cortex

SII:

Secondary somatosensory cortex

VC:

Visual cortex

References

  • Aldes LD (1988) Thalamic connectivity of rat somatic motor cortex. Brain Res Bull 20:333–348

    Article  PubMed  CAS  Google Scholar 

  • Alloway KD (2008) Information processing streams in rodent barrel cortex: the differential functions of barrel and septal circuits. Cereb Cortex 18:979–989

    Article  PubMed  Google Scholar 

  • Alloway KD, Zhang M, Chakrabarti S (2004) Septal columns in rodent barrel cortex: functional circuits for modulating whisking behavior. J Comp Neurol 480:299–309

    Article  PubMed  Google Scholar 

  • Alloway KD, Olson ML, Smith JB (2008) Contralateral corticothalamic projections from MI whisker cortex: potential route for modulating hemispheric interactions. J Comp Neurol 510:100–116

    Article  PubMed  Google Scholar 

  • Alloway KD, Smith JB, Beauchemin KJ, Olson ML (2009) Bilateral projections from rat MI whisker cortex to the neostriatum, thalamus, and claustrum: forebrain circuits for modulating whisking behavior. J Comp Neurol 515:548–564

    Article  PubMed  Google Scholar 

  • Berendese HW, Groenwegen HJ (1991) Restricted cortical termination fields of the midline and intralaminar thalamic axons in the rat. J Comp Neurol 396:121–130

    Google Scholar 

  • Bowden REM, Mahran ZY (1956) The functional significance of the pattern of innervation of the muscle quadratii labii superioris of the rabbit, cat, and rat. J Anat 90:217–227

    PubMed  CAS  Google Scholar 

  • Brecht M, Krauss A, Muhammad S, Sinai-Esfahani L, Bellanca S, Margrie TW (2004a) Organization of rat vibrissa motor cortex and adjacent areas according to cytoarchitectonics, microstimulation, and intracellular stimulation of identified cells. J Comp Neurol 479:360–373

    Article  PubMed  Google Scholar 

  • Brecht M, Schneider M, Sakmann B, Margrie TW (2004b) Whisker movements evoked by stimulation of single pyramidal cells in motor cortex. Nature 427:704–710

    Article  PubMed  CAS  Google Scholar 

  • Brett-Green B, Paulsen M, Staba RJ, Fifkova E, Barth DS (2004) Two distinct regions of secondary somatosensory cortex in the rat: topographical organization and multisensory responses. J Neurophysiol 91:1327–1336

    Article  PubMed  Google Scholar 

  • Burwell RD, Amaral DG (1998) Cortical afferents of the perirhinal, postrhinal, and entorhinal cortices of the rat. J Comp Neurol 398:179–205

    Article  PubMed  CAS  Google Scholar 

  • Carvell GE, Simons DJ (1987) Thalamic and corticocortical connections of the second somatic sensory area of the mouse. J Comp Neurol 265:409–427

    Article  PubMed  CAS  Google Scholar 

  • Caviness VS (1975) Architectonic map of neocortex of the normal mouse. J Comp Neurol 164:247–264

    Article  PubMed  Google Scholar 

  • Chakrabarti S, Alloway KD (2006) Differential origin of projections from SI barrel cortex to the whisker representations in SII and MI. J Comp Neurol 498:624–636

    Article  PubMed  Google Scholar 

  • Chakrabarti S, Zhang M, Alloway KD (2008) MI neuronal responses to peripheral whisker stimulation: relationship to neuronal activity in SI barrels and septa. J Neurophysiol 100:50–63

    Article  PubMed  Google Scholar 

  • Chapin JK, Lin C (1984) Mapping the body representation in the SI cortex of anesthetized and awake rats. J Comp Neurol 229:199–213

    Article  PubMed  CAS  Google Scholar 

  • Chapin JK, Sadeq M, Guise JLU (1987) Corticocortical connections within the primary somatosensory cortex of the rat. J Comp Neurol 263:326–346

    Article  PubMed  CAS  Google Scholar 

  • Chen LL, Nakamura K (1998) Head-centered representation and spatial memory in rat posterior parietal cortex. Psychobiology 26:119–127

    Google Scholar 

  • Cicirata F, Angaut P, Cioni M, Serapide MF, Papale A (1986) Functional organization of thalamic projections to the motor cortex. An anatomical and electrophysiological study in the rat. Neuroscience 19:81–99

    Article  PubMed  CAS  Google Scholar 

  • Crescimanno G, Salerno MT, Cortimiglia R, Amato G (1989) Claustral influences on ipsi- and contralateral motor cortical areas in the cat. Brain Res Bull 22:839–843

    Article  PubMed  CAS  Google Scholar 

  • Crowne DP, Novotny MF, Maier SE, Vitols R (1992) Effects of unilateral parietal lesions on spatial localization in the rat. Behav Neurosci 106:808–819

    Article  PubMed  CAS  Google Scholar 

  • Dijkerman HC, de Haan EHF (2007) Somatosensory processes subserving perception and action. Behav Brain Sci 30:189–239

    Article  PubMed  Google Scholar 

  • Donoghue JP, Parham C (1983) Afferent connections of the lateral agranular field of the rat motor cortex. J Comp Neurol 217:390–404

    Article  PubMed  CAS  Google Scholar 

  • Donoghue JP, Wise SP (1982) The motor cortex of the rat: cytoarchitecture and microstimulation mapping. J Comp Neurol 212:76–88

    Article  PubMed  CAS  Google Scholar 

  • Fabri M, Burton H (1991) Ipsilateral cortical connections of primary somatic sensory cortex in rats. J Comp Neurol 311:405–424

    Article  PubMed  CAS  Google Scholar 

  • Farkas T, Kis Z, Toldi J, Wolff JR (1999) Activation of the primary motor cortex by somatosensory stimulation in adult rats is mediated mainly by association connections from the somatosensory cortex. Neuroscience 90:353–361

    Article  PubMed  CAS  Google Scholar 

  • Gao P, Hattox AM, Jones LM, Keller A, Ziegler HP (2003) Whisker motor cortex ablation and whisker movement patterns. Somatosens Mot Res 20:191–198

    Article  PubMed  Google Scholar 

  • Gonzalez-Lima F, Cada A (1994) Cytochrome oxidase activity in the auditory system of the mouse: a qualitative and quantitative histochemical study. Neuroscience 63:559–578

    Article  PubMed  CAS  Google Scholar 

  • Groenewegen HJ, Witter MP (2004) Thalamus. In: Paxinos G (ed) The rat nervous system, 3rd edn. Elsevier, New York, pp 407–453

    Google Scholar 

  • Gu X, Staines WA, Fortier PA (1999) Quantitative analyses of neurons projecting to primary motor cortex zones controlling limb movements in the rat. Brain Res 835:175–187

    Article  PubMed  CAS  Google Scholar 

  • Haiss F, Schwarz C (2005) Spatial segregation of different modes of movement control in the whisker representation of rat primary motor cortex. J Neurosci 25:1579–1587

    Article  PubMed  CAS  Google Scholar 

  • Hall RD, Lindholm EP (1974) Organization of motor and somatosensory neocortex in the albino rat. Brain Res 66:23–38

    Article  Google Scholar 

  • Hattox AM, Priest CA, Keller A (2002) Functional circuitry involved in the regulation of whisker movements. J Comp Neurol 442:266–276

    Article  PubMed  Google Scholar 

  • Herkenham M (1979) The afferent and efferent connections of the ventromedial thalamic nucleus in the rat. J Comp Neurol 183:487–517

    Article  PubMed  CAS  Google Scholar 

  • Hoover WB, Vertes RP (2007) Anatomical analysis of afferent projections to the medial prefrontal cortex in the rat. Brain Struct Funct 212:149–179

    Article  PubMed  Google Scholar 

  • Insausti R, Herrero MT, Witter MP (1997) Entorhinal cortex of the rat: cytoarchitectonic subdivisions and the origin and distribution of cortical efferents. Hippocampus 7:146–183

    Article  PubMed  CAS  Google Scholar 

  • Katz LC, Iarovici DM (1990) Green fluorescent latex microspheres: a new retrograde tracer. Neuroscience 34:511–520

    Article  PubMed  CAS  Google Scholar 

  • Kesner RP, Farnsworth G, DiMattia BV (1989) Double dissociation of egocentric and allocentric space following medial prefrontal and parietal cortex lesions in the rat. Behav Neurosci 103:956–961

    Article  PubMed  CAS  Google Scholar 

  • Kimura A, Donishi T, Okamoto K, Tamai Y (2004) Efferent connections of “posterodorsal” auditory area in the rat cortex: implications for auditory spatial processing. Neuroscience 128:399–419

    Article  PubMed  CAS  Google Scholar 

  • Kleinfeld D, Ahissar E, Diamond ME (2006) Active sensation: insights from the rodent vibrissa sensorimotor system. Curr Opin Neurobiol 16:435–444

    Article  PubMed  CAS  Google Scholar 

  • Koralek KA, Olavarria J, Killackey HP (1990) Areal and laminar organization of corticocortical projections in the rat somatosensory cortex. J Comp Neurol 299:133–150

    Article  PubMed  CAS  Google Scholar 

  • Kowianski P, Morys J, Sadowski M, Dziewiatkowski J (2000) Qualitative and quantitative differences in the motor and somatosensory cortical projections of the rat claustrum—combined retrograde and stereological studies. Folia Morphol (Warsz) 59:111–119

    CAS  Google Scholar 

  • Krubitzer LA, Sesma MA, Kaas JH (1986) Microelectrode maps, myeloarchitecture, and cortical connections of three somatotopically organized representations of the body surface in the parietal cortex of squirrels. J Comp Neurol 250:403–430

    Article  PubMed  CAS  Google Scholar 

  • Kyuhou S, Gemba H (2002) Projection from the perirhinal cortex to the frontal motor cortex in the rat. Brain Res 929:101–104

    Article  PubMed  CAS  Google Scholar 

  • Land PW, Simons DJ (1985) Cytochrome oxidase staining in the rat SmI barrel cortex. J Comp Neurol 238:225–235

    Article  PubMed  CAS  Google Scholar 

  • Li ZK, Takada M, Hattori T (1986) Topographic organization and collateralization of claustrocortical projections in the rat. Brain Res Bull 17:529–532

    Article  PubMed  CAS  Google Scholar 

  • McIntyre DC, Kelly ME, Staines WA (1996) Efferent projections of the anterior perirhinal cortex in the rat. J Comp Neurol 369:302–318

    Article  PubMed  CAS  Google Scholar 

  • Miller MW, Vogt BA (1984) Direct connections of rat visual cortex with sensory, motor, and association cortices. J Comp Neurol 266:184–202

    Article  Google Scholar 

  • Minciacchi D, Molinari M, Bentivoglio M, Macchi G (1985) The organization of the ipsi- and contralateral claustrocortical system in rat with notes on the bilateral claustrocortical projections in cat. Neuroscience 16:557–576

    Article  PubMed  CAS  Google Scholar 

  • Mitchell BD, Cauller LJ (2001) Corticocortical and thalamocortical projections to layer I of the frontal neocortex in rats. Brain Res 921:68–77

    Article  PubMed  CAS  Google Scholar 

  • Mitchinson B, Martin CJ, Grant RA, Prescott TJ (2007) Feedback control in active sensing: rat exploratory whisking is modulated by environmental contact. Proc R Soc B 274:1035–1041

    Article  PubMed  Google Scholar 

  • Miyashita E, Keller A, Asanuma H (1994) Input-output organization of the rat vibrissal motor cortex. Exp Brain Res 99:223–232

    Article  PubMed  CAS  Google Scholar 

  • Neafsey EJ, Sievert C (1982) A second forelimb motor area exists in rat frontal cortex. Brain Res 232:151–156

    Article  PubMed  CAS  Google Scholar 

  • Neafsey EJ, Bold EL, Haas G, Hurley-Gius KM, Quirk G, Sievert CF, Terreberry RR (1986) The organization of the rat motor cortex: a microstimulation mapping study. Brain Res 396:77–96

    Article  PubMed  CAS  Google Scholar 

  • Norita M (1977) Demonstration of bilateral claustro-cortical connections in the cat with the method of retrograde axonal transport of horseradish peroxidase. Arch Histol Jpn 40:1–10

    PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates, 2nd edn. Academic Press, New York

    Google Scholar 

  • Porter LL, White EL (1983) Afferent and efferent pathways of the vibrissal region of primary motor cortex in the mouse. J Comp Neurol 214:279–289

    Article  PubMed  CAS  Google Scholar 

  • Reep RL, Corwin JV (2009) Posterior parietal cortex as part of a neural network for directed attention in rats. Neurobiol Learn Mem 91:104–113

    Article  PubMed  Google Scholar 

  • Reep RL, Corwin JV, Hashimoto A, Watson RT (1987) Efferent connections of the rostral portion of the medial agranular cortex in rats. Brain Res Bull 19:203–221

    Article  PubMed  CAS  Google Scholar 

  • Reep RL, Goodwin GS, Corwin JV (1990) Topographic organization in the corticocortical connections of medial agranular cortex in rats. J Comp Neurol 294:262–280

    Article  PubMed  CAS  Google Scholar 

  • Reep RL, Chandler HC, King V, Corwin JV (1994) Rat posterior parietal cortex: topography of corticocortical and thalamic connections. Exp Brain Res 100:67–84

    Article  PubMed  CAS  Google Scholar 

  • Remple MS, Henry EC, Catania KC (2003) Organization of somatosensory cortex in the laboratory rat (Rattus norvegicus): evidence for two lateral areas joined at the representation of the teeth. J Comp Neurol 467:105–118

    Article  PubMed  Google Scholar 

  • Rouiller EM, Moret V, Liang F (1993) Comparison of the connectional properties of the two forelimb areas of the rat sensorimotor cortex: support for the presence of a premotor or supplementary motor cortical area. Somatosens Mot Res 10:269–289

    Article  PubMed  CAS  Google Scholar 

  • Sadowski M, Moyrs J, Jakubowska-Sadowska K, Narkiewicz O (1997) Rat’s claustrum shows two main cortico-related zones. Brain Res 756:147–152

    Article  PubMed  CAS  Google Scholar 

  • Sanderson KJ, Welker W, Shambes GM (1984) Reevaluation of motor cortex and of sensorimotor overlap in cerebral cortex of albino rats. Brain Res 292:251–260

    Article  PubMed  CAS  Google Scholar 

  • Semba K, Egger MD (1986) The facial “motor” nerve of the rat: control of vibrissal movement and examination of motor and sensory components. J Comp Neurol 246:144–158

    Article  Google Scholar 

  • Shibata H, Kondo S, Naito J (2004) Organization of retrosplenial cortical projections to the anterior cingulated, motor, and prefrontal cortices in the rat. Neurosci Res 49:1–11

    Article  PubMed  Google Scholar 

  • Sil’kis IG, Bogdanova OG (1999) The properties and possible mechanisms of interhemispheric synchronization in motor cortex of the rat. Neurosci Behav Physiol 29:523–530

    Article  PubMed  Google Scholar 

  • Sloniewski P, Morys J, Pilgrim C (1986) Retrograde transport of fluorescent tracers reveals extensive ipsilateral and contralateral claustrocortical connections in the rat. J Comp Neurol 246:467–477

    Article  PubMed  CAS  Google Scholar 

  • Tandon S, Kambi N, Jain N (2008) Overlapping representations of the neck and whiskers in the rat motor cortex revealed by mapping at different anaesthetic depths. Eur J Neurosci 27:228–237

    Article  PubMed  Google Scholar 

  • Tees RC (1999) The effects of posterior parietal and posterior temporal cortical lesions on multimodal spatial and nonspatial competencies in rats. Behav Brain Res 106:55–73

    Article  PubMed  CAS  Google Scholar 

  • Towal RB, Hartmann MJ (2006) Right-left asymmetries in the whisking behavior of rats anticipate head movements. J Neurosci 26:8838–8846

    Article  PubMed  CAS  Google Scholar 

  • Vogt BA, Miller MW (1983) Cortical connections between rat cingulate cortex and visual, motor, and postsubicular cortices. J Comp Neurol 216:192–210

    Article  PubMed  CAS  Google Scholar 

  • Wallace MN (1987) Histochemical demonstration of sensory maps in the rat and mouse cerebral cortex. Brain Res 418:178–182

    Article  PubMed  CAS  Google Scholar 

  • Welker WI (1964) Analysis of sniffing in the albino rat. Behaviour 12:223–244

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Shubhodeep Chakrabarti, Jared Smith, and Michelle Olson for their help on this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin D. Alloway.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colechio, E.M., Alloway, K.D. Differential topography of the bilateral cortical projections to the whisker and forepaw regions in rat motor cortex. Brain Struct Funct 213, 423–439 (2009). https://doi.org/10.1007/s00429-009-0215-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-009-0215-7

Keywords

Navigation