Skip to main content

Advertisement

Log in

Sources of inputs to the anterior and posterior aspects of the paraventricular nucleus of the thalamus

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

The paraventricular nucleus of the thalamus (PVT) is part of a group of midline and intralaminar thalamic nuclei implicated in arousal and attention. Recent research points to anatomical and functional differences between the anterior (aPVT) and posterior PVT (pPVT). The present study re-examines the main sources of brain inputs to the aPVT and pPVT in the rat following iontophoretic injections of the retrograde tracer cholera toxin B (CTb) in the PVT. The location and the number of retrogradely labeled neurons in different regions of the brain were examined to determine which brain areas are likely to exert a strong influence on the aPVT and pPVT. The largest number of labeled neurons was found in layer 6 of the prelimbic, infralimbic and posterior insular cortices following injections in the pPVT. In contrast, the largest number of labeled neurons following injections of CTb in the aPVT was found to be in the hippocampal subiculum and the prelimbic cortex. Other areas of the brain including the reticular nucleus of the thalamus, periaqueductal gray, parabrachial nucleus and dorsomedial nucleus of the hypothalamus were found to contain a more moderate number of neurons following injections of CTb in either the aPVT or pPVT. The results of the present tracing study clearly show that more neurons in the prefrontal cortex and subiculum project to the PVT than neurons from the hypothalamus and brainstem. These results highlight the potential importance of top–down modulation of PVT mechanisms and behavioral functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

1:

Layer 1

2:

Layer 2

3:

Layer 3

5:

Layer 5

6:

Layer 6

ac:

Anterior commissure

AI:

Agranular insular cortex

AID:

Agranular insular cortex, dorsal part

AIV:

Agranular insular cortex, ventral part

Aq:

Aqueduct

BST:

Bed nucleus of stria terminalis

CeA:

Central amygdaloid nucleus

Cg1:

Cingulate cortex, area 1

Cl:

Claustrum

CM:

Central medial thalamic nucleus

DI:

Dysgranular insular cortex

DM:

Dorsomedial hypothalamic nucleus

DP:

Dorsal peduncular cortex

DR:

Dorsal raphe nucleus

ec:

External capsule

Ent:

Entothinal cortex

f:

Fornix

fmi:

Forceps minor of the corpus callosum

GI:

Granular insular cortex

Hb:

Habenular nucleus

ic:

Internal capsule

IL:

Infralimbic cortex

IMD:

Intermediodorsal thalamic nucleus

LPB:

Lateral parabrachial nucleus

M2:

Secondary motor cortex

MD:

Mediodorsal thalamic nucleus

MnPO:

Median preoptic nucleus

MPA:

Medial preoptic area

MPB:

Medial parabrachial nucleus

OB:

Orbital cortex

PAG:

Periaqueductal gray

PB:

Parabrachial nucleus

PeFLH:

Perifornical part of lateral hypothalamus

PH:

Posterior hypothalamic nucleus

PrL:

Prelimbic cortex

PSTh:

Parasubthalamic nucleus

PT:

Paratenial thalamic nucleus

PVN:

Paraventricular hypothalamic nucleus

PVT:

Paraventricular thalamic nucleus

Rt:

Reticular thalamic nucleus

SCh:

Suprachiasmatic nucleus

scp:

Superior cerebellar peduncle

sm:

Stria medullaris of the thalamus

Sub:

Subiculum

VM:

Ventromedial thalamic nucleus

References

  • Aston-Jones G, Smith RJ, Moorman DE, Richardson KA (2009) Role of lateral hypothalamic orexin neurons in reward processing and addiction. Neuropharmacology 56(Suppl 1):112–121

    Article  PubMed  CAS  Google Scholar 

  • Bannerman DM, Rawlins JN, McHugh SB, Deacon RM, Yee BK, Bast T, Zhang WN, Pothuizen HH, Feldon J (2004) Regional dissociations within the hippocampus—memory and anxiety. Neurosci Biobehav Rev 28:273–283

    Article  PubMed  CAS  Google Scholar 

  • Bannister AP (2005) Inter- and intra-laminar connections of pyramidal cells in the neocortex. Neurosci Res 53:95–103

    Article  PubMed  Google Scholar 

  • Beck CH, Fibiger HC (1995) Conditioned fear-induced changes in behavior and in the expression of the immediate early gene c-fos: with and without diazepam pretreatment. J Neurosci 15:709–720

    PubMed  CAS  Google Scholar 

  • Behbehani MM (1995) Functional characteristics of the midbrain periaqueductal gray. Prog Neurobiol 46:575–605

    Article  PubMed  CAS  Google Scholar 

  • Bentivoglio M, Balercia G, Kruger L (1991) The specificity of the nonspecific thalamus: the midline nuclei. Prog Brain Res 87:53–80

    Article  PubMed  CAS  Google Scholar 

  • Berendse HW, Groenewegen HJ (1990) Organization of the thalamostriatal projections in the rat, with special emphasis on the ventral striatum. J Comp Neurol 299:187–228

    Article  PubMed  CAS  Google Scholar 

  • Bernard JF, Bandler R (1998) Parallel circuits for emotional coping behaviour: new pieces in the puzzle. J Comp Neurol 401:429–436

    Article  PubMed  CAS  Google Scholar 

  • Berridge CW, Espana RA, Vittoz NM (2010) Hypocretin/orexin in arousal and stress. Brain Res 1314:91–102

    Article  PubMed  CAS  Google Scholar 

  • Beuckmann CT, Yanagisawa M (2002) Orexins: from neuropeptides to energy homeostasis and sleep/wake regulation. J Mol Med 80:329–342

    Article  PubMed  CAS  Google Scholar 

  • Bhatnagar S, Dallman M (1998) Neuroanatomical basis for facilitation of hypothalamic–pituitary–adrenal responses to a novel stressor after chronic stress. Neuroscience 84:1025–1039

    Article  PubMed  CAS  Google Scholar 

  • Bhatnagar S, Dallman MF (1999) The paraventricular nucleus of the thalamus alters rhythms in core temperature and energy balance in a state-dependent manner. Brain Res 851:66–75

    Article  PubMed  CAS  Google Scholar 

  • Bhatnagar S, Viau V, Chu A, Soriano L, Meijer OC, Dallman MF (2000) A cholecystokinin-mediated pathway to the paraventricular thalamus is recruited in chronically stressed rats and regulates hypothalamic–pituitary–adrenal function. J Neurosci 20(14):5564–5573

    PubMed  CAS  Google Scholar 

  • Bhatnagar S, Huber R, Nowak N, Trotter P (2002) Lesions of the posterior paraventricular thalamus block habituation of hypothalamic–pituitary–adrenal responses to repeated restraint. J Neuroendocrinol 14:403–410

    Article  PubMed  CAS  Google Scholar 

  • Briggs F, Usrey WM (2008) Emerging views of corticothalamic function. Curr Opin Neurobiol 18:403–407

    Article  PubMed  CAS  Google Scholar 

  • Brog JS, Salyapongse A, Deutch AY, Zahm DS (1993) The patterns of afferent innervation of the core and shell in the “accumbens” part of the rat ventral striatum: immunohistochemical detection of retrogradely transported fluoro-gold. J Comp Neurol 338:255–278

    Article  PubMed  CAS  Google Scholar 

  • Brown EE, Robertson GS, Fibiger HC (1992) Evidence for conditional neuronal activation following exposure to a cocaine-paired environment: role of forebrain limbic structures. J Neurosci 12:4112–4121

    PubMed  CAS  Google Scholar 

  • Bubser M, Deutch AY (1998) Thalamic paraventricular nucleus neurons collateralize to innervate the prefrontal cortex and nucleus accumbens. Brain Res 787:304–310

    Article  PubMed  CAS  Google Scholar 

  • Bubser M, Deutch AY (1999) Stress induces Fos expression in neurons of the thalamic paraventricular nucleus that innervate limbic forebrain sites. Synapse 32:13–22

    Article  PubMed  CAS  Google Scholar 

  • Canteras NS, Swanson LW (1992) Projections of the ventral subiculum to the amygdala, septum, and hypothalamus: a PHAL anterograde tract-tracing study in the rat. J Comp Neurol 324:180–194

    Article  PubMed  CAS  Google Scholar 

  • Cardinal RN, Parkinson JA, Hall J, Everitt BJ (2002) Emotion and motivation: the role of the amygdala, ventral striatum, and prefrontal cortex. Neurosci Biobehav Rev 26(3):321–352

    Article  PubMed  Google Scholar 

  • Chen S, Su HS (1990) Afferent connections of the thalamic paraventricular and parataenial nuclei in the rat—a retrograde tracing study with iontophoretic application of fluoro-gold. Brain Res 522:1–6

    Article  PubMed  CAS  Google Scholar 

  • Cornwall J, Phillipson OT (1988a) Afferent projections to the dorsal thalamus of the rat as shown by retrograde lectin transport–I. The mediodorsal nucleus. Neuroscience 24:1035–1049

    Article  PubMed  CAS  Google Scholar 

  • Cornwall J, Phillipson OT (1988b) Afferent projections to the dorsal thalamus of the rat as shown by retrograde lectin transport. II. The midline nuclei. Brain Res Bull 21:147–161

    Article  PubMed  CAS  Google Scholar 

  • Davis M, Walker DL, Miles L, Grillon C (2010) Phasic vs sustained fear in rats and humans: role of the extended amygdala in fear vs anxiety. Neuropsychopharmacology 35:105–135

    Article  PubMed  Google Scholar 

  • Dayas CV, McGranahan TM, Martin-Fardon R, Weiss F (2008) Stimuli linked to ethanol availability activate hypothalamic CART and orexin neurons in a reinstatement model of relapse. Biol Psychiatry 63:152–157

    Article  PubMed  CAS  Google Scholar 

  • Fanselow MS, Dong HW (2010) Are the dorsal and ventral hippocampus functionally distinct structures? Neuron 65:7–19

    Article  PubMed  CAS  Google Scholar 

  • Freedman LJ, Cassell MD (1994) Relationship of thalamic basal forebrain projection neurons to the peptidergic innervation of the midline thalamus. J Comp Neurol 348:321–342

    Article  PubMed  CAS  Google Scholar 

  • Gabbott PL, Warner TA, Jays PR, Salway P, Busby SJ (2005) Prefrontal cortex in the rat: projections to subcortical autonomic, motor, and limbic centers. J Comp Neurol 492:145–177

    Article  PubMed  Google Scholar 

  • Goto M, Swanson LW (2004) Axonal projections from the parasubthalamic nucleus. J Comp Neurol 469:581–607

    Article  PubMed  Google Scholar 

  • Groenewegen HJ, Berendse HW (1994) The specificity of the ‘nonspecific’ midline and intralaminar thalamic nuclei. Trends Neurosci 17:52–57

    Article  PubMed  CAS  Google Scholar 

  • Groenewegen HJ, Wright CI, Beijer AV, Voorn P (1999) Convergence and segregation of ventral striatal inputs and outputs. Ann N Y Acad Sci 877:49–63

    Article  PubMed  CAS  Google Scholar 

  • Guillery RW, Feig SL, Lozsadi DA (1998) Paying attention to the thalamic reticular nucleus. Trends Neurosci 21:28–32

    Article  PubMed  CAS  Google Scholar 

  • Hamlin AS, Clemens KJ, Choi EA, McNally GP (2009) Paraventricular thalamus mediates context-induced reinstatement (renewal) of extinguished reward seeking. Eur J Neurosci 29:802–812

    Article  PubMed  Google Scholar 

  • Hayama T, Hashimoto K, Ogawa H (1994) Anatomical location of a taste-related region in the thalamic reticular nucleus in rats. Neurosci Res 18:291–299

    Article  PubMed  CAS  Google Scholar 

  • Heidbreder CA, Groenewegen HJ (2003) The medial prefrontal cortex in the rat: evidence for a dorso-ventral distinction based upon functional and anatomical characteristics. Neurosci Biobehav Rev 27:555–579

    Article  PubMed  Google Scholar 

  • Herman JP, Ostrander MM, Mueller NK, Figueiredo H (2005) Limbic system mechanisms of stress regulation: hypothalamo–pituitary–adrenocortical axis. Prog Neuropsychopharmacol Biol Psychiatry 29:1201–1213

    Article  PubMed  CAS  Google Scholar 

  • Hsu DT, Price JL (2007) Midline and intralaminar thalamic connections with the orbital and medial prefrontal networks in macaque monkeys. J Comp Neurol 504:89–111

    Article  PubMed  Google Scholar 

  • Hsu DT, Price JL (2009) Paraventricular thalamic nucleus: subcortical connections and innervation by serotonin, orexin, and corticotropin-releasing hormone in macaque monkeys. J Comp Neurol 512:825–848

    Article  PubMed  Google Scholar 

  • Hurley KM, Herbert H, Moga MM, Saper CB (1991) Efferent projections of the infralimbic cortex of the rat. J Comp Neurol 308:249–276

    Article  PubMed  CAS  Google Scholar 

  • Igelstrom KM, Herbison AE, Hyland BI (2010) Enhanced c-Fos expression in superior colliculus, paraventricular thalamus and septum during learning of cue-reward association. Neuroscience 168:706–714

    Article  PubMed  CAS  Google Scholar 

  • Jaferi A, Bhatnagar S (2006) Corticosterone can act at the posterior paraventricular thalamus to inhibit hypothalamic–pituitary–adrenal activity in animals that habituate to repeated stress. Endocrinology 147:4917–4930

    Article  PubMed  CAS  Google Scholar 

  • Jaferi A, Nowak N, Bhatnagar S (2003) Negative feedback functions in chronically stressed rats: role of the posterior paraventricular thalamus. Physiol Behav 78:365–373

    Article  PubMed  CAS  Google Scholar 

  • James MH, Charnley JL, Jones E, Levi EM, Yeoh JW, Flynn JR, Smith DW, Dayas CV (2010) Cocaine- and amphetamine-regulated transcript (CART) signaling within the paraventricular thalamus modulates cocaine-seeking behaviour. PLoS One 5(9):e12980

    Article  PubMed  CAS  Google Scholar 

  • Kesner RP, Churchwell JC (2011) An analysis of rat prefrontal cortex in mediating executive function. Neurobiol Learn Mem 96:417–431

    Google Scholar 

  • Kirouac GJ, Parsons MP, Li S (2005) Orexin (hypocretin) innervation of the paraventricular nucleus of the thalamus. Brain Res 1059:179–188

    Article  PubMed  CAS  Google Scholar 

  • Kirouac GJ, Parsons MP, Li S (2006) Innervation of the paraventricular nucleus of the thalamus from cocaine- and amphetamine-regulated transcript (CART) containing neurons of the hypothalamus. J Comp Neurol 497:155–165

    Article  PubMed  CAS  Google Scholar 

  • Krout KE, Loewy AD (2000a) Parabrachial nucleus projections to midline and intralaminar thalamic nuclei of the rat. J Comp Neurol 428:475–494

    Article  PubMed  CAS  Google Scholar 

  • Krout KE, Loewy AD (2000b) Periaqueductal gray matter projections to midline and intralaminar thalamic nuclei of the rat. J Comp Neurol 424:111–141

    Article  PubMed  CAS  Google Scholar 

  • Krout KE, Belzer RE, Loewy AD (2002) Brainstem projections to midline and intralaminar thalamic nuclei of the rat. J Comp Neurol 448:53–101

    Article  PubMed  Google Scholar 

  • Lasseter HC, Xie X, Ramirez DR, Fuchs RA (2010) Prefrontal cortical regulation of drug seeking in animal models of drug relapse. Curr Top Behav Neurosci 3:101–117

    Article  PubMed  Google Scholar 

  • Li S, Kirouac GJ (2008) Projections from the paraventricular nucleus of the thalamus to the forebrain, with special emphasis on the extended amygdala. J Comp Neurol 506:263–287

    Article  PubMed  Google Scholar 

  • Li Y, Li S, Sui N, Kirouac GJ (2009) Orexin-A acts on the paraventricular nucleus of the midline thalamus to inhibit locomotor activity in rats. Pharmacol Biochem Behav 93:506–514

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Li S, Wei C, Wang H, Sui N, Kirouac GJ (2010a) Changes in emotional behavior produced by orexin microinjections in the paraventricular nucleus of the thalamus. Pharmacol Biochem Behav 95:121–128

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Li S, Wei C, Wang H, Sui N, Kirouac GJ (2010b) Orexins in the paraventricular nucleus of the thalamus mediate anxiety-like responses in rats. Psychopharmacology 212:251–265

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Wang H, Qi K, Chen X, Li S, Sui N, Kirouac GJ (2011) Orexins in the midline thalamus are involved in the expression of conditioned place aversion to morphine withdrawal. Physiol Behav 102:42–50

    Article  PubMed  CAS  Google Scholar 

  • Luppi PH, Fort P, Jouvet M (1990) Iontophoretic application of unconjugated cholera toxin B subunit (CTb) combined with immunohistochemistry of neurochemical substances: a method for transmitter identification of retrogradely labeled neurons. Brain Res 534:209–224

    Article  PubMed  CAS  Google Scholar 

  • Marchant NJ, Furlong TM, McNally GP (2010) Medial dorsal hypothalamus mediates the inhibition of reward seeking after extinction. J Neurosci 30:14102–14115

    Article  PubMed  CAS  Google Scholar 

  • McNaughton N (2006) The role of the subiculum within the behavioural inhibition system. Behav Brain Res 174:232–250

    Article  PubMed  CAS  Google Scholar 

  • Millan EZ, Marchant NJ, McNally GP (2011) Extinction of drug seeking. Behav Brain Res 217:454–462

    Article  PubMed  CAS  Google Scholar 

  • Moga MM, Weis RP, Moore RY (1995) Efferent projections of the paraventricular thalamic nucleus in the rat. J Comp Neurol 359:221–238

    Article  PubMed  CAS  Google Scholar 

  • Mullen RJ, Buck CR, Smith AM (1992) NeuN, a neuronal specific nuclear protein in vertebrates. Development 116:201–211

    PubMed  CAS  Google Scholar 

  • Nicola SM (2007) The nucleus accumbens as part of a basal ganglia action selection circuit. Psychopharmacology 191:521–550

    Article  PubMed  CAS  Google Scholar 

  • Novak CM, Harris JA, Smale L, Nunez AA (2000) Suprachiasmatic nucleus projections to the paraventricular thalamic nucleus in nocturnal rats (Rattus norvegicus) and diurnal nile grass rats (Arviacanthis niloticus). Brain Res 874:147–157

    Article  PubMed  CAS  Google Scholar 

  • O’Mara SM, Sanchez-Vives MV, Brotons-Mas JR, O’Hare E (2009) Roles for the subiculum in spatial information processing, memory, motivation and the temporal control of behaviour. Prog Neuropsychopharmacol Biol Psychiatry 33:782–790

    Article  PubMed  Google Scholar 

  • Otake K (2005) Cholecystokinin and substance P immunoreactive projections to the paraventricular thalamic nucleus in the rat. Neurosci Res 51:383–394

    Article  PubMed  CAS  Google Scholar 

  • Otake K, Nakamura Y (1995) Sites of origin of corticotropin-releasing factor-like immunoreactive projection fibers to the paraventricular thalamic nucleus in the rat. Neurosci Lett 201:84–86

    Article  PubMed  CAS  Google Scholar 

  • Otake K, Nakamura Y (1998) Single midline thalamic neurons projecting to both the ventral striatum and the prefrontal cortex in the rat. Neuroscience 86:635–649

    Article  PubMed  CAS  Google Scholar 

  • Otake K, Reis DJ, Ruggiero DA (1994) Afferents to the midline thalamus issue collaterals to the nucleus tractus solitarii: an anatomical basis for thalamic and visceral reflex integration. J Neurosci 14:5694–5707

    PubMed  CAS  Google Scholar 

  • Otake K, Ruggiero DA, Nakamura Y (1995) Adrenergic innervation of forebrain neurons that project to the paraventricular thalamic nucleus in the rat. Brain Res 697:17–26

    Article  PubMed  CAS  Google Scholar 

  • Otake K, Kin K, Nakamura Y (2002) Fos expression in afferents to the rat midline thalamus following immobilization stress. Neurosci Res 43:269–282

    Article  PubMed  CAS  Google Scholar 

  • Padilla-Coreano N, Do-Monte FH, Quirk GJ (2012) A time-dependent role of midline thalamic nuclei in the retrieval of fear memory. Neuropharmacology 62:457–463

    Article  PubMed  CAS  Google Scholar 

  • Parsons MP, Li S, Kirouac GJ (2007) Functional and anatomical connection between the paraventricular nucleus of the thalamus and dopamine fibers of the nucleus accumbens. J Comp Neurol 500:1050–1063

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (2009) The rat brain in stereotaxic coordinates, 6th edn. Elsevier Academic Press, San Diego

    Google Scholar 

  • Peng ZC, Bentivoglio M (2004) The thalamic paraventricular nucleus relays information from the suprachiasmatic nucleus to the amygdala: a combined anterograde and retrograde tracing study in the rat at the light and electron microscopic levels. J Neurocytol 33:101–116

    Article  PubMed  CAS  Google Scholar 

  • Pennartz CM, Groenewegen HJ, Lopes da Silva FH (1994) The nucleus accumbens as a complex of functionally distinct neuronal ensembles: an integration of behavioural, electrophysiological and anatomical data. Prog Neurobiol 42:719–761

    Article  PubMed  CAS  Google Scholar 

  • Peters J, Kalivas PW, Quirk GJ (2009) Extinction circuits for fear and addiction overlap in prefrontal cortex. Learn Mem 16:279–288

    Article  PubMed  Google Scholar 

  • Phillipson OT, Bohn MC (1994) C1–3 adrenergic medullary neurones project to the paraventricular thalamic nucleus in the rat. Neurosci Lett 176:67–70

    Article  PubMed  CAS  Google Scholar 

  • Pinault D (2004) The thalamic reticular nucleus: structure, function and concept. Brain Res Brain Res Rev 46:1–31

    Article  PubMed  Google Scholar 

  • Quirk GJ, Beer JS (2006) Prefrontal involvement in the regulation of emotion: convergence of rat and human studies. Curr Opin Neurobiol 16:723–727

    Article  PubMed  CAS  Google Scholar 

  • Rhodes JS, Ryabinin AE, Crabbe JC (2005) Patterns of brain activation associated with contextual conditioning to methamphetamine in mice. Behav Neurosci 119:759–771

    Article  PubMed  CAS  Google Scholar 

  • Rogge G, Jones D, Hubert GW, Lin Y, Kuhar MJ (2008) CART peptides: regulators of body weight, reward and other functions. Nat Rev Neurosci 9:747–758

    Article  PubMed  CAS  Google Scholar 

  • Ruggiero DA, Anwar S, Kim J, Glickstein SB (1998) Visceral afferent pathways to the thalamus and olfactory tubercle: behavioral implications. Brain Res 799:159–171

    Article  PubMed  CAS  Google Scholar 

  • Sesack SR, Deutch AY, Roth RH, Bunney BS (1989) Topographical organization of the efferent projections of the medial prefrontal cortex in the rat: an anterograde tract-tracing study with Phaseolus vulgaris leucoagglutinin. J Comp Neurol 290:213–242

    Article  PubMed  CAS  Google Scholar 

  • Shi CJ, Cassell MD (1998) Cortical, thalamic, and amygdaloid connections of the anterior and posterior insular cortices. J Comp Neurol 399:440–468

    Article  PubMed  CAS  Google Scholar 

  • Smith WJ, Stewart J, Pfaus JG (1997) Tail pinch induces fos immunoreactivity within several regions of the male rat brain: effects of age. Physiol Behav 61:717–723

    Article  PubMed  CAS  Google Scholar 

  • Smith Y, Raju DV, Pare JF, Sidibe M (2004) The thalamostriatal system: a highly specific network of the basal ganglia circuitry. Trends Neurosci 27:520–527

    Article  PubMed  CAS  Google Scholar 

  • Stehberg J, Acuna-Goycolea C, Ceric F, Torrealba F (2001) The visceral sector of the thalamic reticular nucleus in the rat. Neuroscience 106:745–755

    Article  PubMed  CAS  Google Scholar 

  • Su HS, Bentivoglio M (1990) Thalamic midline cell populations projecting to the nucleus accumbens, amygdala, and hippocampus in the rat. J Comp Neurol 297:582–593

    Article  PubMed  CAS  Google Scholar 

  • Swanson LW (2004) Brain maps: Structure of the rat brain, 3rd edn. Elsevier, San Diego

    Google Scholar 

  • Takada M, Campbell KJ, Moriizumi T, Hattori T (1990) On the origin of the dopaminergic innervation of the paraventricular thalamic nucleus. Neurosci Lett 115:33–36

    Article  PubMed  CAS  Google Scholar 

  • Thompson RH, Swanson LW (2003) Structural characterization of a hypothalamic visceromotor pattern generator network. Brain Res Brain Res Rev 41:153–202

    Article  PubMed  CAS  Google Scholar 

  • Thompson RH, Canteras NS, Swanson LW (1996) Organization of projections from the dorsomedial nucleus of the hypothalamus: a PHA-L study in the rat. J Comp Neurol 376:143–173

    Article  PubMed  CAS  Google Scholar 

  • Timofeeva E, Richard D (2001) Activation of the central nervous system in obese Zucker rats during food deprivation. J Comp Neurol 441:71–89

    Article  PubMed  CAS  Google Scholar 

  • Van der Werf YD, Witter MP, Groenewegen HJ (2002) The intralaminar and midline nuclei of the thalamus. Anatomical and functional evidence for participation in processes of arousal and awareness. Brain Res Brain Res Rev 39:107–140

    Article  PubMed  Google Scholar 

  • Vertes RP (2004) Differential projections of the infralimbic and prelimbic cortex in the rat. Synapse 51:32–58

    Article  PubMed  CAS  Google Scholar 

  • Vertes RP, Hoover WB (2008) Projections of the paraventricular and paratenial nuclei of the dorsal midline thalamus in the rat. J Comp Neurol 508:212–237

    Article  PubMed  Google Scholar 

  • Walker DL, Toufexis DJ, Davis M (2003) Role of the bed nucleus of the stria terminalis versus the amygdala in fear, stress, and anxiety. Eur J Pharmacol 463:199–216

    Article  PubMed  CAS  Google Scholar 

  • Watts AG, Swanson LW, Sanchez-Watts G (1987) Efferent projections of the suprachiasmatic nucleus: I. Studies using anterograde transport of Phaseolus vulgaris leucoagglutinin in the rat. J Comp Neurol 258:204–229

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto T, Fujimoto Y, Shimura T, Sakai N (1995) Conditioned taste aversion in rats with excitotoxic brain lesions. Neurosci Res 22:31–49

    Article  PubMed  CAS  Google Scholar 

  • Yasoshima Y, Scott TR, Yamamoto T (2007) Differential activation of anterior and midline thalamic nuclei following retrieval of aversively motivated learning tasks. Neuroscience 146:922–930

    Article  PubMed  CAS  Google Scholar 

  • Zahm DS, Williams E, Wohltmann C (1996) Ventral striatopallidothalamic projection: IV. Relative involvements of neurochemically distinct subterritories in the ventral pallidum and adjacent parts of the rostroventral forebrain. J Comp Neurol 364:340–362

    Article  PubMed  CAS  Google Scholar 

  • Zhu L, Wu L, Yu B, Liu X (2011) The participation of a neurocircuit from the paraventricular thalamus to amygdala in the depressive like behavior. Neurosci Lett 488:81–86

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Grant sponsor: Canadian Institutes of Health Research (CIHR); Grant number: MOP89758 (to G.J.K.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilbert J. Kirouac.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, S., Kirouac, G.J. Sources of inputs to the anterior and posterior aspects of the paraventricular nucleus of the thalamus. Brain Struct Funct 217, 257–273 (2012). https://doi.org/10.1007/s00429-011-0360-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-011-0360-7

Keywords

Navigation