Skip to main content
Log in

MeCP2-mediated alterations of striatal features accompany psychomotor deficits in a mouse model of Rett syndrome

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Rett Syndrome (RTT) is a neurodevelopmental disorder caused by mutations in the methyl-CpG-binding protein 2 (MECP2) gene. Affected individuals develop motor deficits including stereotypic hand movements, impaired motor learning and difficulties with movement. To understand the neural mechanisms of motor deficits in RTT, we characterized the molecular and cellular phenotypes in the striatum, the major input nucleus of the basal ganglia that controls psychomotor function, in mice carrying a null allele of Mecp2. These mice showed significant hypoactivity associated with impaired motor coordination and motor skill learning. We found that dopamine content was significantly reduced in the striatum of Mecp2 null mice. Reduced dopamine was accompanied by down-regulation of tyrosine hydroxylase and up-regulation of dopamine D2 receptors, particularly in the rostral striatum. We also observed that loss of MeCP2 induced compartment-specific alterations in the striatum, including reduced expression of μ-opioid receptors in the striosomes and increased number of calbindin-positive neurons in the striatal matrix. The total number of parvalbumin-positive interneurons and their dendritic arborization were also significantly increased in the striatum of Mecp2 null mice. Together, our findings support that MeCP2 regulates a unique set of genes critical for modulating motor output of the striatum, and that aberrant structure and function of the striatum due to MeCP2 deficiency may underlie the motor deficits in RTT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY (1999) Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet 23:185–188

    Article  CAS  PubMed  Google Scholar 

  • Amir RE, Van den Veyver IB, Schultz R, Malicki DM, Tran CQ, Dahle EJ, Philippi A, Timar L, Percy AK, Motil KJ, Lichtarge O, Smith EO, Glaze DG, Zoghbi HY (2000) Influence of mutation type and X chromosome inactivation on Rett syndrome phenotypes. Ann Neurol 47:670–679

    Article  CAS  PubMed  Google Scholar 

  • Anzalone A, Lizardi-Ortiz JE, Ramos M, De MC, Hopf FW, Iaccarino C, Halbout B, Jacobsen J, Kinoshita C, Welter M, Caron MG, Bonci A, Sulzer D, Borrelli E (2012) Dual control of dopamine synthesis and release by presynaptic and postsynaptic dopamine D2 receptors. J Neurosci 32:9023–9034

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Barmack NH, Qian Z, Yakhnittsa V (2010) Climbing fibers induce microRNA transcription in cerebellar Purkinje cells. Neuroscience 171(3):655–665

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Burkett JP, Spiegel LL, Inoue K, Murphy AZ, Young LJ (2011) Activation of mu-opioid receptors in the dorsal striatum is necessary for adult social attachment in monogamous prairie voles. Neuropsychopharmacology 36:2200–2210

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Canales JJ, Graybiel AM (2000) A measure of striatal function predicts motor stereotypy. Nat Neurosci 3:377–383

    Article  CAS  PubMed  Google Scholar 

  • Chahrour M, Zoghbi HY (2007) The story of Rett syndrome: from clinic to neurobiology. Neuron 56:422–437

    Article  CAS  PubMed  Google Scholar 

  • Chahrour M, Jung SY, Shaw C, Zhou X, Wong ST, Qin J, Zoghbi HY (2008) MeCP2, a key contributor to neurological disease, activates and represses transcription. Science 320:1224–1229

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chao HT, Chen H, Samaco RC, Xue M, Chahrour M, Yoo J, Neul JL, Gong S, Lu HC, Heintz N, Ekker M, Rubenstein JL, Noebels JL, Rosenmund C, Zoghbi HY (2010) Dysfunction in GABA signalling mediates autism-like stereotypies and Rett syndrome phenotypes. Nature 468:263–269

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen RZ, Akbarian S, Tudor M, Jaenisch R (2001) Deficiency of methyl-CpG binding protein-2 in CNS neurons results in a Rett-like phenotype in mice. Nat Genet 27:327–331

    Article  CAS  PubMed  Google Scholar 

  • Chiron C, Bulteau C, Loc’h C, Raynaud C, Garreau B, Syrota A, Maziere B (1993) Dopaminergic D2 receptor SPECT imaging in Rett syndrome: increase of specific binding in striatum. J Nucl Med 34:1717–1721

    CAS  PubMed  Google Scholar 

  • Collin T, Chat M, Lucas MG, Moreno H, Racay P, Schwaller B, Marty A, Llano I (2005) Developmental changes in parvalbumin regulate presynaptic Ca2+ signaling. J Neurosci 25:96–107

    Article  CAS  PubMed  Google Scholar 

  • Crittenden JR, Graybiel AM (2011) Basal ganglia disorders associated with imbalances in the striatal striosome and matrix compartments. Front Neuroanat 5:59

    Article  PubMed Central  PubMed  Google Scholar 

  • Deng JV, Rodriguiz RM, Hutchinson AN, Kim IH, Wetsel WC, West AE (2010) MeCP2 in the nucleus accumbens contributes to neural and behavioral responses to psychostimulants. Nat Neurosci 13:1128–1136

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Di CG, Imperato A (1988) Opposite effects of mu and kappa opiate agonists on dopamine release in the nucleus accumbens and in the dorsal caudate of freely moving rats. J Pharmacol Exp Ther 244:1067–1080

    Google Scholar 

  • Dumas TC, Powers EC, Tarapore PE, Sapolsky RM (2004) Overexpression of calbindin D (28k) in dentate gyrus granule cells alters mossy fiber presynaptic function and impairs hippocampal-dependent memory. Hippocampus 14:701–709

    Article  CAS  PubMed  Google Scholar 

  • Dunn HG, Stoessl AJ, Ho HH, MacLeod PM, Poskitt KJ, Doudet DJ, Schulzer M, Blackstock D, Dobko T, Koop B, de Amorim GV (2002) Rett syndrome: investigation of nine patients, including PET scan. Can J Neurol Sci 29:345–357

    Article  PubMed  Google Scholar 

  • Enomoto H, Hendy GN, Andrews GK, Clemens TL (1992) Regulation of avian calbindin-D28K gene expression in primary chick kidney cells: importance of posttranscriptional mechanisms and calcium ion concentration. Endocrinology 130:3467–3474

    CAS  PubMed  Google Scholar 

  • Figueredo-Cardenas G, Harris CL, Anderson KD, Reiner A (1998) Relative resistance of striatal neurons containing calbindin or parvalbumin to quinolinic acid-mediated excitotoxicity compared to other striatal neuron types. Exp Neurol 149:356–372

    Article  CAS  PubMed  Google Scholar 

  • Fujiyama F, Unzai T, Nakamura K, Nomura S, Kaneko T (2006) Difference in organization of corticostriatal and thalamostriatal synapses between patch and matrix compartments of rat neostriatum. Eur J Neurosci 24:2813–2824

    Article  PubMed  Google Scholar 

  • Gantz SC, Ford CP, Neve KA, Williams JT (2011) Loss of Mecp2 in substantia nigra dopamine neurons compromises the nigrostriatal pathway. J Neurosci 31:12629–12637

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gemelli T, Berton O, Nelson ED, Perrotti LI, Jaenisch R, Monteggia LM (2006) Postnatal loss of methyl-CpG binding protein 2 in the forebrain is sufficient to mediate behavioral aspects of Rett syndrome in mice. Biol Psychiatry 59:468–476

    Article  CAS  PubMed  Google Scholar 

  • Gittis AH, Hang GB, LaDow ES, Shoenfeld LR, Atallah BV, Finkbeiner S, Kreitzer AC (2011) Rapid target-specific remodeling of fast-spiking inhibitory circuits after loss of dopamine. Neuron 71:858–868

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Goffin D, Allen M, Zhang L, Amorim M, Wang IT, Reyes AR, Mercado-Berton A, Ong C, Cohen S, Hu L, Blendy JA, Carlson GC, Siegel SJ, Greenberg ME, Zhou Z (2012) Rett syndrome mutation MeCP2 T158A disrupts DNA binding, protein stability and ERP responses. Nat Neurosci 15:274–283

    Article  CAS  Google Scholar 

  • Graybiel AM (1984) Correspondence between the dopamine islands and striosomes of the mammalian striatum. Neuroscience 13:1157–1187

    Article  CAS  PubMed  Google Scholar 

  • Guy J, Hendrich B, Holmes M, Martin JE, Bird A (2001) A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome. Nat Genet 27:322–326

    Article  CAS  PubMed  Google Scholar 

  • Hagberg B, Aicardi J, Dias K, Ramos O (1983) A progressive syndrome of autism, dementia, ataxia, and loss of purposeful hand use in girls: Rett’s syndrome: report of 35 cases. Ann Neurol 14:471–479

    Article  CAS  PubMed  Google Scholar 

  • Herkenham M, Pert CB (1981) Mosaic distribution of opiate receptors, parafascicular projections and acetylcholinesterase in rat striatum. Nature 291:415–418

    Article  CAS  PubMed  Google Scholar 

  • Hilario M, Holloway T, Jin X, Costa RM (2012) Different dorsal striatum circuits mediate action discrimination and action generalization. Eur J Neurosci 35:1105–1114

    Article  PubMed Central  PubMed  Google Scholar 

  • Hontanilla B, de las HS, Gimenez-Amaya JM (1996) A topographic re-evaluation of the nigrostriatal projections to the caudate nucleus in the cat with multiple retrograde tracers. Neuroscience 72:485–503

    Article  CAS  PubMed  Google Scholar 

  • Horike S, Cai S, Miyano M, Cheng JF, Kohwi-Shigematsu T (2005) Loss of silent-chromatin looping and impaired imprinting of DLX5 in Rett syndrome. Nat Genet 37:31–40

    Article  CAS  PubMed  Google Scholar 

  • Hwang CK, Song KY, Kim CS, Choi HS, Guo XH, Law PY, Wei LN, Loh HH (2009) Epigenetic programming of mu-opioid receptor gene in mouse brain is regulated by MeCP2 and Brg1 chromatin remodelling factor. J Cell Mol Med 13:3591–3615

    Article  PubMed  Google Scholar 

  • Johnson SW, North RA (1992) Opioids excite dopamine neurons by hyperpolarization of local interneurons. J Neurosci 12:483–488

    CAS  PubMed  Google Scholar 

  • Jouvenceau A, Potier B, Poindessous-Jazat F, Dutar P, Slama A, Epelbaum J, Billard JM (2002) Decrease in calbindin content significantly alters LTP but not NMDA receptor and calcium channel properties. Neuropharmacology 42:444–458

    Article  CAS  PubMed  Google Scholar 

  • Jung MY, Hof PR, Schmauss C (2000) Targeted disruption of the dopamine D(2) and D(3) receptor genes leads to different alterations in the expression of striatal calbindin-D(28k). Neuroscience 97:495–504

    Article  CAS  PubMed  Google Scholar 

  • Kimchi EY, Laubach M (2009) Dynamic encoding of action selection by the medial striatum. J Neurosci 29:3148–3159

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Koos T, Tepper JM (1999) Inhibitory control of neostriatal projection neurons by GABAergic interneurons. Nat Neurosci 2:467–472

    Article  CAS  PubMed  Google Scholar 

  • Kreitzer AC, Malenka RC (2008) Striatal plasticity and basal ganglia circuit function. Neuron 60:543–554

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lang M, Wither RG, Brotchie JM, Wu C, Zhang L, Eubanks JH (2013) Selective preservation of MeCP2 in catecholaminergic cells is sufficient to improve the behavioral phenotype of male and female Mecp2-deficient mice. Hum Mol Genet 22:358–371

    Article  CAS  PubMed  Google Scholar 

  • Lawhorn C, Smith DM, Brown LL (2009) Partial ablation of mu-opioid receptor rich striosomes produces deficits on a motor-skill learning task. Neuroscience 163:109–119

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liao WL, Tsai HC, Wang HF, Chang J, Lu KM, Wu HL, Lee YC, Tsai TF, Takahashi H, Wagner M, Ghyselinck NB, Chambon P, Liu FC (2008) Modular patterning of structure and function of the striatum by retinoid receptor signaling. Proc Natl Acad Sci USA 105:6765–6770

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lindgren N, Xu ZQ, Herrera-Marschitz M, Haycock J, Hokfelt T, Fisone G (2001) Dopamine D(2) receptors regulate tyrosine hydroxylase activity and phosphorylation at Ser40 in rat striatum. Eur J Neurosci 13:773–780

    Article  CAS  PubMed  Google Scholar 

  • Liu FC, Graybiel AM (1992) Transient calbindin-D28k-positive systems in the telencephalon: ganglionic eminence, developing striatum and cerebral cortex. J Neurosci 12:674–690

    CAS  PubMed  Google Scholar 

  • Miralves J, Magdeleine E, Joly E (2007) Design of an improved set of oligonucleotide primers for genotyping MeCP2tm1.1Bird KO mice by PCR. Mol Neurodegener 2:16

    Article  PubMed Central  PubMed  Google Scholar 

  • Miura M, Saino-Saito S, Masuda M, Kobayashi K, Aosaki T (2007) Compartment-specific modulation of GABAergic synaptic transmission by mu-opioid receptor in the mouse striatum with green fluorescent protein-expressing dopamine islands. J Neurosci 27:9721–9728

    Article  CAS  PubMed  Google Scholar 

  • Moles A, Kieffer BL, D’Amato FR (2004) Deficit in attachment behavior in mice lacking the mu-opioid receptor gene. Science 304:1983–1986

    Article  CAS  PubMed  Google Scholar 

  • Moore AE, Cicchetti F, Hennen J, Isacson O (2001) Parkinsonian motor deficits are reflected by proportional A9/A10 dopamine neuron degeneration in the rat. Exp Neurol 172:363–376

    Article  CAS  PubMed  Google Scholar 

  • Mosconi MW, Takarae Y, Sweeney JA (2011) Motor functioning and dyspraxia in autism spectrum disorders. In: Amaral DG, Dawson G, Geschwind DH (eds) Autism spectrum disorders. Oxford University Press Inc, New York, pp 355–380

    Chapter  Google Scholar 

  • Nan X, Ng HH, Johnson CA, Laherty CD, Turner BM, Eisenman RN, Bird A (1998) Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393:386–389

    Article  CAS  PubMed  Google Scholar 

  • Pan PY, Ryan TA (2012) Calbindin controls release probability in ventral tegmental area dopamine neurons. Nat Neurosci 15:813–815

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Panayotis N, Pratte M, Borges-Correia A, Ghata A, Villard L, Roux JC (2011) Morphological and functional alterations in the substantia nigra pars compacta of the Mecp2-null mouse. Neurobiol Dis 41:385–397

    Article  CAS  PubMed  Google Scholar 

  • Paxinos and Franklin (2004) The mouse brain in stereotaxic coordinates. Compact second edition. Elsevier, London

    Google Scholar 

  • Piepponen TP, Honkanen A, Kivastik T, Zharkovsky A, Turtia A, Mikkola JA, Ahtee L (1999) Involvement of opioid mu1-receptors in opioid-induced acceleration of striatal and limbic dopaminergic transmission. Pharmacol Biochem Behav 63:245–252

    Article  CAS  PubMed  Google Scholar 

  • Reiss AL, Faruque F, Naidu S, Abrams M, Beaty T, Bryan RN, Moser H (1993) Neuroanatomy of Rett syndrome: a volumetric imaging study. Ann Neurol 34:227–234

    Article  CAS  PubMed  Google Scholar 

  • Samaco RC, Mandel-Brehm C, Chao HT, Ward CS, Fyffe-Maricich SL, Ren J, Hyland K, Thaller C, Maricich SM, Humphreys P, Greer JJ, Percy A, Glaze DG, Zoghbi HY, Neul JL (2009) Loss of MeCP2 in aminergic neurons causes cell-autonomous defects in neurotransmitter synthesis and specific behavioral abnormalities. Proc Natl Acad Sci USA 106:21966–21971

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Samaco RC, Mandel-Brehm C, McGraw CM, Shaw CA, McGill BE, Zoghbi HY (2012) Crh and Oprm1 mediate anxiety-related behavior and social approach in a mouse model of MECP2 duplication syndrome. Nat Genet 44:206–211

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schmidt H (2012) Three functional facets of calbindin D-28k. Front Mol Neurosci 5:25

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shahbazian MD, Antalffy B, Armstrong DL, Zoghbi HY (2002a) Insight into Rett syndrome: MeCP2 levels display tissue-and cell-specific differences and correlate with neuronal maturation. Hum Mol Genet 11:115–124

    Article  CAS  PubMed  Google Scholar 

  • Shahbazian M, Young J, Yuva-Paylor L, Spencer C, Antalffy B, Noebels J, Armstrong D, Paylor R, Zoghbi H (2002b) Mice with truncated MeCP2 recapitulate many Rett syndrome features and display hyperacetylation of histone H3. Neuron 35:243–254

    Article  CAS  PubMed  Google Scholar 

  • Stearns NA, Schaevitz LR, Bowling H, Nag N, Berger UV, Berger-Sweeney J (2007) Behavioral and anatomical abnormalities in Mecp2 mutant mice: a model for Rett syndrome. Neuroscience 146:907–921

    Article  CAS  PubMed  Google Scholar 

  • Sterling L, McLaughlin A, King BH (2011) Stereotypy and self-injury. In: Amaral DG, Dawson G, Geschwind DH (eds) Autism spectrum disorder. Oxford University Press Inc, New York, pp 339–354

    Chapter  Google Scholar 

  • Szulwach KE, Li X, Smrt RD, Li Y, Luo Y, Lin L, Santistevan NJ, Li W, Zhao X, Jin P (2010) Cross talk between microRNA and epigenetic regulation in adult neurogenesis. J Cell Biol 189(1):127–141

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Temudo T, Ramos E, Dias K, Barbot C, Vieira JP, Moreira A, Calado E, Carrilho I, Oliveira G, Levy A, Fonseca M, Cabral A, Cabral P, Monteiro JP, Borges L, Gomes R, Santos M, Sequeiros J, Maciel P (2008) Movement disorders in Rett syndrome: an analysis of 60 patients with detected MECP2 mutation and correlation with mutation type. Mov Disord 23:1384–1390

    Article  PubMed  Google Scholar 

  • Thorn CA, Atallah H, Howe M, Graybiel AM (2010) Differential dynamics of activity changes in dorsolateral and dorsomedial striatal loops during learning. Neuron 66:781–795

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ungerstedt U, Herrera-Marschitz M, Stahle L, Tossman U, Zetterstrom T (1985) Functional classification of different dopamine receptors. Psychopharmacology Suppl 2:19–30

    Google Scholar 

  • van der Kooy D, Fishell G (1992) Embryonic lesions of the substantia nigra prevent the patchy expression of opiate receptors, but not the segregation of patch and matrix compartment neurons, in the developing rat striatum. Brain Res Dev Brain Res 66:141–145

    Article  PubMed  Google Scholar 

  • Wang Y, Dye CA, Sohal V, Long JE, Estrada RC, Roztocil T, Lufkin T, Deisseroth K, Baraban SC, Rubenstein JL (2010) Dlx5 and Dlx6 regulate the development of parvalbumin-expressing cortical interneurons. J Neurosci 30:5334–5345

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Watabe-Uchida M, Zhu L, Ogawa SK, Vamanrao A, Uchida N (2012) Whole-brain mapping of direct inputs to midbrain dopamine neurons. Neuron 74:858–873

    Article  CAS  PubMed  Google Scholar 

  • Wood L, Shepherd GM (2010) Synaptic circuit abnormalities of motor-frontal layer 2/3 pyramidal neurons in a mutant mouse model of Rett syndrome. Neurobiol Dis 38:281–287

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wood L, Gray NW, Zhou Z, Greenberg ME, Shepherd GM (2009) Synaptic circuit abnormalities of motor-frontal layer 2/3 pyramidal neurons in an RNA interference model of methyl-CpG-binding protein 2 deficiency. J Neurosci 29:12440–12448

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wu Y, Parent A (2000) Striatal interneurons expressing calretinin, parvalbumin or NADPH-diaphorase: a comparative study in the rat, monkey and human. Brain Res 863:182–191

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Fu Y, Knott G, Lu J, Di CG, Huang ZJ (2012) GABA signaling promotes synapse elimination and axon pruning in developing cortical inhibitory interneurons. J Neurosci 32:331–343

    Article  PubMed Central  PubMed  Google Scholar 

  • Yenari MA, Minami M, Sun GH, Meier TJ, Kunis DM, McLaughlin JR, Ho DY, Sapolsky RM, Steinberg GK (2001) Calbindin d28k overexpression protects striatal neurons from transient focal cerebral ischemia. Stroke 32:1028–1035

    Article  CAS  PubMed  Google Scholar 

  • Yin HH, Mulcare SP, Hilario MR, Clouse E, Holloway T, Davis MI, Hansson AC, Lovinger DM, Costa RM (2009) Dynamic reorganization of striatal circuits during the acquisition and consolidation of a skill. Nat Neurosci 12:333–341

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Jin-Chung Chen and Dr. Ming-Ji Fann for critical reading of the manuscript, and Dr. Chih-Chang Chao for technical consultation. This study was supported by National Science Council of Taiwan (NSC99-2320-B-004-001-MY2, NSC100-2320-B-004-001, NSC101-2320-B-004-003-MY2).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenlin Liao.

Additional information

F.-C. Kao and S.-H. Su contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kao, FC., Su, SH., Carlson, G.C. et al. MeCP2-mediated alterations of striatal features accompany psychomotor deficits in a mouse model of Rett syndrome. Brain Struct Funct 220, 419–434 (2015). https://doi.org/10.1007/s00429-013-0664-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-013-0664-x

Keywords

Navigation