Skip to main content
Log in

Neuronal mechanisms underlying transhemispheric diaschisis following focal cortical injuries

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Unilateral cortical lesions cause disturbances often spreading into the hemisphere contralateral to the injury. The functional alteration affecting the contralesional cortex is called transhemispheric diaschisis and is believed to contribute to neurological deficits and to processes of functional reorganization post-lesion. Despite the profound implications for recovery, little is known about the cellular mechanisms that underlie this phenomenon. In the present study, transhemispheric diaschisis was investigated with an in vivo–ex vivo model of unilateral lesions, induced by an infrared laser in rat visual cortex. Visually evoked cortical activity was evaluated by the expression level of the cellular activity marker zif268, which showed an elevation in the cortex contralateral to the lesion. In vitro patch-clamp recordings from layer 2/3 pyramidal neurons revealed a shift in the excitatory–inhibitory balance in favor of excitability, particularly expressed in the undamaged hemisphere. Layer 5 principal neurons displayed an increased spontaneous firing rate contralateral to the lesion, while cells of the injured cortex displayed a reduced firing upon somatic current injection. These data suggest that a cortical lesion triggers an enhanced neuronal activity in the hemisphere contralateral to the damage. Our findings constitute an important step toward the understanding of transhemispheric diaschisis on the cellular level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Andrews RJ (1991) Transhemispheric diaschisis. A review and comment. Stroke 22:943–949

    Article  CAS  PubMed  Google Scholar 

  • Arckens L, Zhang F, Vanduffel W, Mailleux P, Vanderhaeghen JJ, Orban GA, Vandesande F (1995) Localization of the two protein kinase C beta-mRNA subtypes in cat visual system. J Chem Neuroanat 8:117–124

    Article  CAS  PubMed  Google Scholar 

  • Arckens L, Van Der Gucht E, Eysel UT, Orban GA, Vandesande F (2000) Investigation of cortical reorganization in area 17 and nine extrastriate visual areas through the detection of changes in immediate early gene expression as induced by retinal lesions. J Comp Neurol 425:531–544

    Article  CAS  PubMed  Google Scholar 

  • Avramescu S, Timofeev I (2008) Synaptic strength modulation after cortical trauma: a role in epileptogenesis. J Neurosci 28:6760–6772

    Article  CAS  PubMed  Google Scholar 

  • Axelson HW, Winkler T, Flygt J, Djupsjö A, Hånell A, Marklund N (2013) Plasticity of the contralateral motor cortex following focal traumatic brain injury in the rat. Restor Neurol Neurosci 31:73–85

    PubMed  Google Scholar 

  • Bar-Yehuda D, Korngreen A (2007) Cellular and network contributions to excitability of layer 5 neocortical pyramidal neurons in the rat. PLoS One 2:e1209

    Article  PubMed Central  PubMed  Google Scholar 

  • Biernaskie J, Szymanska A, Windle V, Corbett D (2005) Bi-hemispheric contribution to functional motor recovery of the affected forelimb following focal ischemic brain injury in rats. Eur J Neurosci 21:989–999

    Article  PubMed  Google Scholar 

  • Buchkremer-Ratzmann I, August M, Hagemann G, Witte OW (1996) Electrophysiological transcortical diaschisis after cortical photothrombosis in rat brain. Stroke 27:1105–1111

    Article  CAS  PubMed  Google Scholar 

  • Bury SD, Jones TA (2002) Unilateral sensorimotor cortex lesions in adult rats facilitate motor skill learning with the “unaffected” forelimb and training-induced dendritic structural plasticity in the motor cortex. J Neurosci 22:8597–8606

    CAS  PubMed  Google Scholar 

  • Caillard O, Moreno H, Schwaller B, Llano I, Celio MR, Marty A (2000) Role of the calcium-binding protein parvalbumin in short-term synaptic plasticity. Proc Natl Acad Sci USA 97:13372–13377

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cao Y, D’Olhaberriague L, Vikingstad EM, Levine SR, Welch KM (1998) Pilot study of functional MRI to assess cerebral activation of motor function after poststroke hemiparesis. Stroke 29:112–122

    Article  CAS  PubMed  Google Scholar 

  • Carter AR, Astafiev SV, Lang CE, Connor LT, Rengachary J, Strube MJ, Pope DL, Shulman GL, Corbetta M (2010) Resting interhemispheric functional magnetic resonance imaging connectivity predicts performance after stroke. Ann Neurol 67:365–375

    PubMed Central  PubMed  Google Scholar 

  • Chabot N, Robert S, Tremblay R, Miceli D, Boire D, Bronchti G (2007) Audition differently activates the visual system in neonatally enucleated mice compared with anophthalmic mutants. Eur J Neurosci 26:2334–2348

    Article  PubMed  Google Scholar 

  • Chollet F, DiPiero V, Wise RJ, Brooks DJ, Dolan RJ, Frackowiak RS (1991) The functional anatomy of motor recovery after stroke in humans: a study with positron emission tomography. Ann Neurol 29:63–71

    Article  CAS  PubMed  Google Scholar 

  • Clarkson AN, Huang BS, MacIsaac SE, Mody I, Carmichael ST (2010) Reducing excessive GABA-mediated tonic inhibition promotes functional recovery after stroke. Nature 468:305–309

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cramer SC, Nelles G, Benson RR, Kaplan JD, Parker RA, Kwong KK, Kennedy DN, Finklestein SP, Rosen BR (1997) A functional MRI study of subjects recovered from hemiparetic stroke. Stroke 28:2518–2527

    Article  CAS  PubMed  Google Scholar 

  • Dancause N, Nudo RJ (2011) Shaping plasticity to enhance recovery after injury. Prog Brain Res 192:273–295

    Article  PubMed Central  PubMed  Google Scholar 

  • Deisz RA (1999) The GABA(B) receptor antagonist CGP 55845A reduces presynaptic GABA(B) actions in neocortical neurons of the rat in vitro. Neuroscience 93:1241–1249

    Article  CAS  PubMed  Google Scholar 

  • Dijkhuizen RM, Singhal AB, Mandeville JB, Wu O, Halpern EF, Finklestein SP, Rosen BR, Lo EH (2003) Correlation between brain reorganization, ischemic damage, and neurologic status after transient focal cerebral ischemia in rats: a functional magnetic resonance imaging study. J Neurosci 23:510–517

    CAS  PubMed  Google Scholar 

  • Finger S, Koehler PJ, Jagella C (2004) The Monakow concept of diaschisis: origins and perspectives. Arch Neurol 61:283–288

    Article  PubMed  Google Scholar 

  • Gazzaniga MS (2005) Forty-five years of split-brain research and still going strong. Nat Rev Neurosci 6:653–659

    Article  CAS  PubMed  Google Scholar 

  • Greifzu F, Schmidt S, Schmidt KF, Kreikemeier K, Witte OW, Löwel S (2011) Global impairment and therapeutic restoration of visual plasticity mechanisms after a localized cortical stroke. Proc Natl Acad Sci USA 108:15450–15455

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Haydon PG, Carmignoto G (2006) Astrocyte control of synaptic transmission and neurovascular coupling. Physiol Rev 86:1009–1031

    Article  CAS  PubMed  Google Scholar 

  • Hu TT, Laeremans A, Eysel UT, Cnops L, Arckens L (2009) Analysis of c-fos and zif268 expression reveals time-dependent changes in activity inside and outside the lesion projection zone in adult cat area 17 after retinal lesions. Cereb Cortex 19:2982–2992

    Article  PubMed  Google Scholar 

  • Imbrosci B, Neubacher U, White R, Eysel UT, Mittmann T (2013) Shift from phasic to tonic GABAergic transmission following laser-lesions in the rat visual cortex. Pflug Arch 465:879–893

    Article  CAS  Google Scholar 

  • Innocenti GM (1986) Postnatal development of corticocortical connections. Ital J Neurol Sci 5:25–28

    PubMed  Google Scholar 

  • Jablonka J, Kossut M (2006) Focal stroke in the barrel cortex of rats enhances ipsilateral response to vibrissal input. Acta Neurobiol Exp (Wars) 66:261–266

    Google Scholar 

  • Jiang L, Sun S, Nedergaard M, Kang J (2000) Paired-pulse modulation at individual GABAergic synapses in rat hippocampus. J Physiol 523:425–439

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jones MV, Westbrook GL (1996) The impact of receptor desensitization on fast synaptic transmission. Trends Neurosci 19:96–101

    Article  CAS  PubMed  Google Scholar 

  • Kaczmarek L, Chaudhuri A (1997) Sensory regulation of immediate-early gene expression in mammalian visual cortex: implications for functional mapping and neural plasticity. Brain Res Rev 23:237–256

    Article  CAS  PubMed  Google Scholar 

  • Kasper EM, Lübke J, Larkman AU, Blakemore C (1994) Pyramidal neurons in layer 5 of the rat visual cortex. III. Differential maturation of axon targeting, dendritic morphology, and electrophysiological properties. J Comp Neurol 339:495–518

    Article  CAS  PubMed  Google Scholar 

  • Kennerley SW, Diedrichsen J, Hazeltine E, Semjen A, Ivry RB (2002) Callosotomy patients exhibit temporal uncoupling during continuous bimanual movements. Nat Neurosci 5:376–381

    Article  CAS  PubMed  Google Scholar 

  • Knapska E, Kaczmarek L (2004) A gene for neuronal plasticity in the mammalian brain: Zif268/Egr-1/NGFI-A/Krox-24/TIS8/ZENK? Prog Neurobiol 74:183–211

    Article  CAS  PubMed  Google Scholar 

  • Li H, Prince DA (2002) Synaptic activity in chronically injured, epileptogenic sensory-motor neocortex. J Neurophysiol 88:2–12

    PubMed  Google Scholar 

  • Li H, Bandrowski AE, Prince DA (2005) Cortical injury affects short-term plasticity of evoked excitatory synaptic currents. J Neurophysiol 93:146–156

    Article  PubMed  Google Scholar 

  • Macharadze T, Pielot R, Wanger T, Scheich H, Gundelfinger ED, Budinger E, Goldschmidt J, Kreutz MR (2012) Altered neuronal activity patterns in the visual cortex of the adult rat after partial optic nerve crush—a single-cell resolution metabolic mapping study. Cereb Cortex 22:1824–1833

    Article  PubMed  Google Scholar 

  • Makarov VA, Schmidt KE, Castellanos NP, Lopez-Aguado L, Innocenti GM (2008) Stimulus-dependent interaction between the visual areas 17 and 18 of the 2 hemispheres of the ferret (Mustela putorius). Cereb Cortex 18:1951–1960

    Article  PubMed  Google Scholar 

  • Meyer KL, Dempsey RJ, Roy MW, Donaldson DL (1985) Somatosensory evoked potentials as a measure of experimental cerebral ischemia. J Neurosurg 62:269–275

    Article  CAS  PubMed  Google Scholar 

  • Mittmann T, Luhmann HJ, Schmidt-Kastner R, Eysel UT, Weigel H, Heinemann U (1994) Lesion-induced transient suppression of inhibitory function in rat neocortex in vitro. Neuroscience 60:891–906

    Article  CAS  PubMed  Google Scholar 

  • Mohajerani MH, Aminoltejari K, Murphy TH (2011) Targeted mini-strokes produce changes in interhemispheric sensory signal processing that are indicative of disinhibition within minutes. Proc Natl Acad Sci USA 108:E183–E191

    Article  PubMed Central  PubMed  Google Scholar 

  • Molnár Z, Cheung AF (2006) Towards the classification of subpopulations of layer V pyramidal projection neurons. Neurosci Res 55:105–115

    Article  PubMed  Google Scholar 

  • Molyneaux BJ, Arlotta P, Menezes JR, Macklis JD (2007) Neuronal subtype specification in the cerebral cortex. Nat Rev Neurosci 8:427–437

    Article  CAS  PubMed  Google Scholar 

  • Nakashima K, Kanba M, Fujimoto K, Sato T, Takahashi K (1985) Somatosensory evoked potentials over the non-affected hemisphere in patients with unilateral cerebrovascular lesions. J Neurol Sci 70:117–127

    Article  CAS  PubMed  Google Scholar 

  • Neumann-Haefelin T, Witte OW (2000) Periinfarct and remote excitability changes after transient middle cerebral artery occlusion. J Cereb Blood Flow Metab 20:45–52

    Article  CAS  PubMed  Google Scholar 

  • Nys J, Aerts J, Ytebrouck E, Vreysen S, Laeremans A, Arckens L (2013) The cross-modal aspect of mouse visual cortex plasticity induced by monocular enucleation is age-dependent. J Comp Neurol. doi:10.1002/cne.23455

    Google Scholar 

  • Olavarria J, Van Sluyters RC (1983) Widespread callosal connections in infragranular visual cortex of the rat. Brain Res 279:233–237

    Article  CAS  PubMed  Google Scholar 

  • Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates, 6th edn. Elsevier Science, San Diego

    Google Scholar 

  • Pérez-Garci E, Gassmann M, Bettler B, Larkum ME (2006) The GABAB1b isoform mediates long-lasting inhibition of dendritic Ca2+ spikes in layer 5 somatosensory pyramidal neurons. Neuron 50:603–616

    Article  PubMed  Google Scholar 

  • Pietrasanta M, Restani L, Caleo M (2012) The corpus callosum and the visual cortex: plasticity is a game for two. Neural Plast 2012:838672. doi:10.1155/2012/838672

    PubMed Central  PubMed  Google Scholar 

  • Reinecke S, Lutzenburg M, Hagemann G, Bruehl C, Neumann-Haefelin T, Witte OW (1999) Electrophysiological transcortical diaschisis after middle cerebral artery occlusion (MCAO) in rats. Neurosci Lett 261:85–88

    Article  CAS  PubMed  Google Scholar 

  • Reinecke S, Dinse HR, Reinke H, Witte OW (2003) Induction of bilateral plasticity in sensory cortical maps by small unilateral cortical infarcts in rats. Eur J Neurosci 17:623–627

    Article  CAS  PubMed  Google Scholar 

  • Restani L, Cerri C, Pietrasanta M, Gianfranceschi L, Maffei L, Caleo M (2009) Functional masking of deprived eye responses by callosal input during ocular dominance plasticity. Neuron 64:707–718

    Article  CAS  PubMed  Google Scholar 

  • Rochefort NL, Buzás P, Quenech’du N, Koza A, Eysel UT, Milleret C, Kisvárday ZF (2009) Functional selectivity of interhemispheric connections in cat visual cortex. Cereb Cortex 19:2451–2465

    Article  CAS  PubMed  Google Scholar 

  • Roll L, Mittmann T, Eysel UT, Faissner A (2012) The laser lesion of the mouse visual cortex as a model to study neural extracellular matrix remodeling during degeneration, regeneration and plasticity of the CNS. Cell Tissue Res 349:133–145

    Article  CAS  PubMed  Google Scholar 

  • Sakatani K, Iizuka H, Young W (1990) Somatosensory evoked potentials in rat cerebral cortex before and after middle cerebral artery occlusion. Stroke 21:124–132

    Article  CAS  PubMed  Google Scholar 

  • Serrien DJ, Nirkko AC, Wiesendanger M (2001) Role of the corpus callosum in bimanual coordination: a comparison of patients with congenital and acquired callosal damage. Eur J Neurosci 14:1897–1905

    Article  CAS  PubMed  Google Scholar 

  • Takahata T, Hashikawa T, Higo N, Tochitani S, Yamamori T (2008) Difference in sensory dependence of occ1/follistatin-related protein expression between macaques and mice. J Chem Neuroanat 35:146–157

    Article  CAS  PubMed  Google Scholar 

  • Takahata T, Higo N, Kaas JH, Yamamori T (2009) Expression of immediate-early genes reveals functional compartments within ocular dominance columns after brief monocular inactivation. Proc Natl Acad Sci USA 106:12151–12155

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Takatsuru Y, Fukumoto D, Yoshitomo M, Nemoto T, Tsukada H, Nabekura J (2009) Neuronal circuit remodeling in the contralateral cortical hemisphere during functional recovery from cerebral infarction. J Neurosci 29:10081–10086

    Article  CAS  PubMed  Google Scholar 

  • Thomson AM (2000) Facilitation, augmentation and potentiation at central synapses. Trends Neurosci 23:305–312

    Article  CAS  PubMed  Google Scholar 

  • Van Brussel L, Gerits A, Arckens L (2009) Identification and localization of functional subdivisions in the visual cortex of the adult mouse. J Comp Neurol 514:107–116

    Article  PubMed  Google Scholar 

  • Van Brussel L, Gerits A, Arckens L (2011) Evidence for cross-modal plasticity in adult mouse visual cortex following monocular enucleation. Cereb Cortex 21:2133–2146

    Article  PubMed  Google Scholar 

  • Van der Gucht E, Hof PR, Van Brussel L, Burnat K, Arckens L (2007) Neurofilament protein and neuronal activity markers define regional architectonic parcellation in the mouse visual cortex. Cereb Cortex 17:2805–2819

    Article  PubMed  Google Scholar 

  • Van Meer MP, van der Marel K, Wang K, Otte WM, El Bouazati S, Roeling TA, Viergever MA, Berkelbach van der Sprenkel JW, Dijkhuizen RM (2010) Recovery of sensorimotor function after experimental stroke correlates with restoration of resting-state interhemispheric functional connectivity. J Neurosci 30:3964–3972

    Article  PubMed  Google Scholar 

  • Von Monakow C (1914) Die Lokalisation im Grosshirn und der Abbau der Funktion durch kortikale Herde. JF Bergmann, Wiesbaden

    Google Scholar 

  • Yan L, Imbrosci B, Zhang W, Neubacher U, Hatt H, Eysel UT, Mittmann T (2012) Changes in NMDA-receptor function in the first week following laser-induced lesions in rat visual cortex. Cereb Cortex 22:2392–2403

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Simone Dahms-Praetorius and Ria Vanlaer for excellent technical assistance. This work was supported by a grant from the German Research Foundation (DFG) (Grant Number MI 452/4-1) to T.M., a grant from the Research Council of KU Leuven (Grant Number GOA 12/008) to L.A. E.Y. is supported by a Ph.D. grant from the Agency of Innovation by Science and Technology (IWT) Flanders.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Barbara Imbrosci or Thomas Mittmann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 175 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Imbrosci, B., Ytebrouck, E., Arckens, L. et al. Neuronal mechanisms underlying transhemispheric diaschisis following focal cortical injuries. Brain Struct Funct 220, 1649–1664 (2015). https://doi.org/10.1007/s00429-014-0750-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-014-0750-8

Keywords

Navigation