Skip to main content

Advertisement

Log in

Reduced programmed cell death in the retina and defects in lens and cornea of Tgfβ2 –/– Tgfβ3 –/– double-deficient mice

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract.

We have previously shown that immunoneutralization of transforming growth factor-β (TGF-β) in the chick embryo significantly reduces programmed cell death (PCD) in peripheral neurons, spinal cord, and retina. In order to validate these results we have begun to analyze PCD in mice with targeted ablations of the TGF-β2 and TGF-β3 genes. Recent analyses of mice lacking TGF-β3 had failed to reveal an overt eye phenotype, while retinae of TGF-β2-deficient mice showed retinal hypercellularity. We report now that eyes of Tgfβ2/Tgfβ3 double-deficient mice display severe alterations in the morphology of the retina, lens, and cornea. The inner neural retina—the region where TGF-β receptor (TβR) I and II immunoreactivities are most prominent—is significantly thickened, and numbers of TUNEL-positive cells are significantly reduced compared to wild-type littermates. In Tgfβ2 −/− Tgfβ3 −/− and Tgfβ2 −/− Tgfβ3 +/− littermates the retina was consistently detached from the underlying pigment epithelium. Cornea, corneal stroma, and lens epithelium were significantly thinner in these mutants. In contrast, retinal morphology in Tgfβ2 +/− Tgfβ3 −/−mutant littermates resembles the situation observed in wild-type retinae except for the retinal detachment. Thus, regression in the thickness of cornea and corneal stroma seems to be TGF-β isoform and gene dose dependent. Our results substantiate the notion based on previous analyses of chick embryos with reduced levels of endogenous TGF-β that TGF-β, most notably TGF-β2, is required to mediate PCD in developing retinal cells in vivo. Moreover, our data indicate that TGF-βs play essential roles in cornea and lens development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2A–H.
Fig. 3A–G.
Fig. 4A–I.
Fig. 5A–E.
Fig. 6. A
Fig. 7A–E.

Similar content being viewed by others

References

  • Ashley DM, Kong FM, Bigner DD, Hale LP (1998) Endogenous expression of transforming growth factor beta1 inhibits growth and tumorigenicity and enhances Fas-mediated apoptosis in a murine high-grade glioma model. Cancer Res 58:302–309

    CAS  PubMed  Google Scholar 

  • Bähr M (2000) Live or let die—retinal ganglion cell death and survival during development and in the lesioned adult CNS. Trends Neurosci 23:483–490

    Article  PubMed  Google Scholar 

  • Cecconi F, Alvarez-Bolado G, Meyer BI, Roth KA, Gruss P (1998) Apaf1 (CED-4 homolog) regulates programmed cell death in mammalian development. Cell 94:727–737

    CAS  PubMed  Google Scholar 

  • Cellerino A, Bähr M, Isenmann S (2000) Apoptosis in the developing visual system. Cell Tissue Res 301:53–69

    Article  CAS  PubMed  Google Scholar 

  • Cuadros MA, Rios A (1988) Spatial and temporal correlation between early nerve fiber growth and neuroepithelial cell death in the chick embryo retina. Anat Embryol 178:543–551

    CAS  PubMed  Google Scholar 

  • Dünker N, Krieglstein K (2000) Targeted mutations of transforming growth factor-beta genes reveal important roles in mouse development and adult homeostasis. Eur J Biochem 267:6982–6988

    PubMed  Google Scholar 

  • Dünker N, Krieglstein K (2002) Tgfβ2−/−Tgfβ3−/− double knockout mice display severe midline fusion defects and early embryonic lethality. Anat Embryol 206:73–83

    Article  PubMed  Google Scholar 

  • Dünker N, Schuster N, Krieglstein K (2001) TGF-β modulates programmed cell death in the retina of the developing chick embryo. Development 128:1933–1942

    PubMed  Google Scholar 

  • Dünker N, Schmitt K, Schuster N, Krieglstein K (2002a) The role of transforming growth factor beta-2, beta-3 in mediating apoptosis in the murine intestinal mucosa. Gastroenterology 122:1364–1375

    PubMed  Google Scholar 

  • Dünker N, Schmitt K, Krieglstein K (2002b) TGF-β is required for programmed cell death in interdigital webs of the developing mouse limb. Mech Dev 113:111–120

    PubMed  Google Scholar 

  • Frade JM, Bovolenta P, Martinez-Morales JR, Arribas A, Barbas JA, Rodriguez-Tebar A (1997) Control of early cell death by BDNF in the chick retina. Development 124:3313–3320

    CAS  PubMed  Google Scholar 

  • Frade JM, Barde YA (1999) Genetic evidence for cell death mediated by nerve growth factor and the neurotrophin receptor p75 in the developing mouse retina and spinal cord. Development 126:683–690

    CAS  PubMed  Google Scholar 

  • Gold L (1999) The role for transforming growth factor-β (TGF-β) in human cancer. Crit Rev Onc 10:303–360

    CAS  Google Scholar 

  • Grotendorst GR (1997) Connective tissue growth factor: a mediator of TGF-β action on fibroblasts. Cytokine Growth Factor Rev 8:171–179

    CAS  PubMed  Google Scholar 

  • Heine U, Munoz EF, Flanders KC, Ellingsworth LR, Lam HY, Thompson NL, Roberts AB, Sporn MB (1987) Role of transforming growth factor-beta in the development of the mouse embryo. J Cell Biol 105:2861–2876

    Google Scholar 

  • Hocevar BA, Howe PH (2000) Methods in molecular biology. In: Howe H (ed) Transforming growth factor-β protocols, vol 142. Humana, Totowa, NJ

  • Ikeda T, Homma Y, Nisida K, Hirase K, Sotozono C, Kinoshita S, Uro DG (1998) Expression of transforming growth factor-βs and their receptors by human retinal glial cells. Curr Eye Res 17:546–550

    Article  CAS  PubMed  Google Scholar 

  • de Iongh RU, Lovicu F, Overbeek PA, Schnider MD, Joya J, Hardeman ED, McAvoy AW (2001) Requirement for TGFβ receptor signaling during terminal lens fiber differentiation. Development 128:3995–4010

    PubMed  Google Scholar 

  • Itoh S, Itoh F, Goumans MJ, ten Dijke P (2000) Signaling of transforming growth factor-β family members through smad proteins. Eur J Biochem 267:6947–6954

    Google Scholar 

  • Kaartinen V, Voncken JW, Shuler, Warburton D, Bu D, Heisterkamp N, Groffen J (1995) Abnormal lung development and cleft palate in mice lacking TGF-b3 indicates defects of epithelial-mesenchymal interaction. Nat Genet 11:415–421

    CAS  PubMed  Google Scholar 

  • Krieglstein K, Farkas L, Unsicker K (1998a) TGF-β regulates the survival of ciliary ganglionic neurons synergistically with ciliary neurotrophic factor and neurotrophins. J Neurobiol 37:563–572

    Article  CAS  PubMed  Google Scholar 

  • Krieglstein K, Henheik P, Farkas L, Jaszai J, Galter D, Krohn K, Unsicker K (1998b) Glial cell line-derived neurotrophic factor requires transforming growth factor-beta for exerting its full neurotrophic potential on peripheral and CNS neurons. J Neurosci 18:9822–9834

    PubMed  Google Scholar 

  • Krieglstein K, Richter S, Farkas L, Schuster N, Dünker N, Oppenheim RW, Unsicker K (2000) Reduction of endogenous TGF-β prevents ontogenetic neuron death. Nat Neurosci 3:1085–1090

    CAS  PubMed  Google Scholar 

  • Kuida K, Zheng TS, Na S, Kuan C, Yang D, Karasuyama H, Rakic P, Flavell RA (1996) Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature 384:368–372

    CAS  PubMed  Google Scholar 

  • Kulkarni A, Huh CG, Becker D, Geiser A, Lyght M, Flanders KC, Roberts AB, Sporn MB, Ward JM (1993) Transforming growth factor b1 null mutation in mice causes excessive inflammatory response and early death. Proc Natl Acad Sci U S A 90:770–774

    CAS  PubMed  Google Scholar 

  • Lawrence DA (1996) Transforming growth factor-beta: a general review. Eur Cytokine Netw 7:363–374

    CAS  PubMed  Google Scholar 

  • Lutty GA, Ikeda K, Chander C, McLeod DS (1991) Immunohistochemical localization of transforming growth factor-β in human photoreceptors. Curr Eye Res 10:61–74

    CAS  PubMed  Google Scholar 

  • Lutty GA, Merges C, Threlkeld AB, Crone S, McLeod DS (1993) Heterogeneity in localization of isoforms of TGF-β in human retina, vitreous, and choroid. Invest Ophthalmol Vis Sci 34:477–487

    CAS  PubMed  Google Scholar 

  • Martinou JC, Dubois-Dauphin M, Staple JK, Rodriguez I, Frankowski H, Missotten M, Albertini P, Talabot D, Catsicas S, Pietra C, et al. (1994) Overexpression of Bcl-2 in transgenic mice protects neurons from naturally occurring cell death and experimental ischemia. Neuron 13:1017–1030

    CAS  PubMed  Google Scholar 

  • Massague J (1990) The transforming growth factor-β family. Annu Rev Cell Biol 6:597–641

    PubMed  Google Scholar 

  • Massague J, Chen YG (2000) Controlling TGF-beta signaling. Genes Dev 14:627–644

    CAS  PubMed  Google Scholar 

  • Mosinger Ogilvie J, Deckwerth TL, Knudson CM, Krosmeyer SJ (1998) Suppression of developmental retinal cell death but not of photoreceptor degeneration in Bax-deficient mice. Invest Ophthalmol Vis Res 39:1713–1720

    Google Scholar 

  • Nishida K, Kinoshita S, Yokoi N, Kaneda M, Hashimoto K, Yamamoto S (1994) Immunohistochemical localization of transforming growth factor-beta 1, -beta 2, and -beta 3 latency-associated peptide in human cornea. Invest Ophthalmol Vis Sci 35:3289–3294

    CAS  PubMed  Google Scholar 

  • Oppenheim RW (1991) Cell death during development of the nervous system. Annu Rev Neurosci 14:453–501

    CAS  PubMed  Google Scholar 

  • Pfeffer BA, Flanders KC, Guerin CJ, Danielpour D, Anderson DH (1994) Transforming growth factor-beta 2 is the predominant isoform in the neural retina, retinal pigment epithelium-choroid, and vitreous of the monkey eye. Exp Eye Res 59:323–333

    Article  CAS  PubMed  Google Scholar 

  • Proetzel G, Pawlowski SA, Wiles WV, Yin M, Boivin G, Howles PN, Ding J, Ferguson MWJ, Doetschman T (1995) Transforming growth factor-β3 is required for secondary palate fusion. Nature Genet 11:409–414

    CAS  PubMed  Google Scholar 

  • Roberts AB, Sporn MB (1990) The transforming growth factor-βs. In: Sporn MB, Roberts AB (eds) Handbook of experimental pharmacology. Peptide growth factors and their receptors, vol 95/I. Springer, Berlin Heidelberg New York, pp 419–472

  • Roberts AB, McCune BK, Sporn MB (1992) TGF-beta: regulation of extracellular matrix. Kidney Int 41:557–559

    CAS  PubMed  Google Scholar 

  • Saika S, Sika S, Liu C, Azhar M, Sandford LP, Doetschman T, Gendron RL, Kao CWC, Kao WWY (2001) TGFβ2 in corneal morphogenesis during mouse embryonic development. Dev Biol 240:419–432

    Article  CAS  PubMed  Google Scholar 

  • Sanford LP, Ormsby I, Gittenberger-de Groot A, Sariola H, Friedman R, Boivin GP, Cardell EL, Doetschman T (1997) TGFβ2 knockout mice have multiple developmental defects that are non-overlapping with other TGFβ knockout phenotypes. Development 124:2659–2670

    CAS  PubMed  Google Scholar 

  • Sidman RL (1961) Histogenesis of mouse retina studied with [3H]thymidine. In: Smelser GK (ed) The structure of the eye. Academic, London, pp 487–506

  • Silver J, Hughes AFW (1973) The role of cell death during morphogenesis of the mammalian eye. J Morphol 140:159–190

    CAS  PubMed  Google Scholar 

  • Silver J, Robb RM (1979) Studies on the development of the eye cup and optic nerve in normal mice and mutants with congenital optic nerve aplasia. Dev Biol 68:175–190

    CAS  PubMed  Google Scholar 

  • Wrana JL, Attisano L (2000) The Smad pathway. Cytokine Growth Factor Rev 11:5–13

    CAS  PubMed  Google Scholar 

  • Yamada H, Obata H, Kaji Y, Yamashita H (1999) Expression of transforming growth factor-β superfamily receptors in developing rat eyes. J Ophthalmol 43:290–294

    Article  CAS  Google Scholar 

Download references

Acknowledgements.

The authors are grateful to T. Doetschman (University of Cincinnati, Cincinnati, OH) for generously providing Tgfβ2 +/− and Tgfβ3 +/− breeding pairs. The authors also thank Ms. H. Böttcher, Ms. S. Brundaler, and Ms. G. Kühnreich for excellent technical assistance, and Ms. C. Maelicke for carefully proofreading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole Dünker.

Additional information

This work was supported by grants from the Deutsche Forschungsgemeinschaft.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dünker, N., Krieglstein, K. Reduced programmed cell death in the retina and defects in lens and cornea of Tgfβ2 –/– Tgfβ3 –/– double-deficient mice. Cell Tissue Res 313, 1–10 (2003). https://doi.org/10.1007/s00441-003-0761-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-003-0761-x

Keywords

Navigation