Skip to main content
Log in

The morphology of excitatory central synapses: from structure to function

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Synapses are the key elements for signal transduction and plasticity in the brain. For a better understanding of the functional signal cascades underlying synaptic transmission, a quantitative morphological analysis of the pre- and postsynaptic structures that represent morphological correlates for synaptic transmission is important. In particular, realistic values of the number, distribution, and geometry of synaptic contacts and the organization of the pool of synaptic vesicles provide important constraints for realistic models and numerical simulations of those parameters of synaptic transmission that, at present, are still not accessible to experiment. Although all synapses are composed of almost the same structural elements, the composition of these elements within a given synapse and the microcircuit in which they are embedded are the deciding factors determining its function. One possible way to analyze these structures is by computer-assisted three-dimensional reconstructions of synapses and their subsequent quantitative analysis based on ultrathin serial sections. The present review summarizes and discusses the morphology of five central excitatory synapses that are quantitatively well described: (1) a giant synapse, the so-called Calyx of Held, in the medial nucleus of the trapezoid body in the auditory brain stem, (2) the mossy fiber terminal establishing synapses with multiple cerebellar granule cell dendrites, (3) the mossy fiber bouton in the hippocampus predominantly terminating on proximal dendrites of CA3 pyramidal neurons, (4) the climbing fiber-Purkinje cell synapse in the cerebellum, and (5) cortical input synapses on the basal dendrites of layer 5 pyramidal cells. The detailed morphological description of these synaptic structures may help to define the morphological correlates of the functional parameters of synaptic transmission, such as the readily releasable pool of synaptic vesicles, of release, and of the variability of quantal size and might therefore explain the existing differences in the function between individual synapses embedded in different microcircuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Acsády L, Kamondi A, Sik A, Freund T, Buzsaki G (1998) GABAergic cells are the major postsynaptic targets of mossy fibers in the rat hippocampus. J Neurosci 18:3386–3403

    PubMed  Google Scholar 

  • Alle H, Geiger JR (2006) Combined analog and action potential coding in hippocampal mossy fibers. Science 311:1290–1293

    Article  PubMed  CAS  Google Scholar 

  • Becherer R, Rettig J (2006) Vesicle pools, priming and release. Cell Tissue Res (DOI 10.1007/s00441-006-0243-z this issue)

  • Bertram R, Smith GD, Sherman A (1999) Modeling study of the effects of overlapping Ca2+ microdomains on neurotransmitter release. Biophys J 76:735–750

    PubMed  CAS  Google Scholar 

  • Biro AA, Nusser Z (2005) Synapse independence breaks down during highly synchronous network activity in the rat hippocampus. Eur J Neurosci 22:1257–1262

    Article  PubMed  Google Scholar 

  • Bischofberger J, Geiger JR, Jonas P (2002) Timing and efficacy of Ca2+ channel activation in hippocampal mossy fiber boutons. J Neurosci 22:10593–10602

    PubMed  CAS  Google Scholar 

  • Bliss TV, Lomø T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol (Lond) 232:331–356

    CAS  Google Scholar 

  • Bollmann JH, Sakmann B, Borst JG (2000) Calcium sensitivity of glutamate release in a Calyx-type terminal. Science 289:953–957

    Article  PubMed  CAS  Google Scholar 

  • Borst JG, Sakmann B (1996) Calcium influx and transmitter release in a fast CNS synapse. Nature 383:431–434

    Article  PubMed  CAS  Google Scholar 

  • Borst JG, Sakmann B (1998) Calcium current during a single action potential in a large presynaptic terminal of the rat brainstem. J Physiol (Lond) 506:143–157

    Article  CAS  Google Scholar 

  • Borst JG, Helmchen F, Sakmann B (1995) Pre- and postsynaptic whole-cell recordings in the medial nucleus of the trapezoid body of the rat. J Physiol (Lond) 489:825–840

    CAS  Google Scholar 

  • Chicurel ME, Harris KM (1992) Three-dimensional analysis of the structure and composition of CA3 branched dendritic spines and their synaptic relationships with mossy fiber boutons in the rat hippocampus. J Comp Neurol 325:169–182

    Article  PubMed  CAS  Google Scholar 

  • Craig AM, Graf ER, Linhoff MW (2006) How to build a central synapse: clues from cell culture. Trends Neurosci 29:8–20

    Article  PubMed  CAS  Google Scholar 

  • Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65:1–105

    Article  PubMed  CAS  Google Scholar 

  • DeFelipe J, Farinas I (1992) The pyramidal neuron of the cerebral cortex: morphological and chemical characteristics of the synaptic inputs. Prog Neurobiol 39:563–607

    Article  PubMed  CAS  Google Scholar 

  • Derouiche A, Frotscher M (1991) Astroglial processes around identified glutamatergic synapses contain glutamine synthetase: evidence for transmitter degradation. Brain Res 552:346–350

    Article  PubMed  CAS  Google Scholar 

  • Dieck S tom, Brandstätter JH (2006) Ribbon synapses of the retina. Cell Tissue Research (DOI 10.1007/s00441-006-0234-0, this issue)

  • Engel D, Jonas P (2005) Presynaptic action potential amplification by voltage-gated Na+ channels in hippocampal mossy fiber boutons. Neuron 45:405–417

    Article  PubMed  CAS  Google Scholar 

  • Ferraguti F, Shigemoto R (2006) Metabotropic glutamate receptors. Cell Tissue Research (DOI 10.1007/s00441-006-0266-5, this issue)

  • Forsythe ID (1994) Direct patch recording from identified presynaptic terminals mediating glutamatergic EPSCs in the rat CNS, in vitro. J Physiol (Lond) 479:381–387

    Google Scholar 

  • Frotscher M (1989) Mossy fiber synapses on glutamate decarboxylase-immunoreactive neurons: evidence for feed-forward inhibition in the CA3 region of the hippocampus. Exp Brain Res 75:441–445

    PubMed  CAS  Google Scholar 

  • Frotscher M, Jonas P, Sloviter RS (2006) Synapses formed by normal and abnormal hippocampal mossy fibers. Cell Tissue Res (DOI 10.1007/s00441-006-0269-2, this issue)

  • Ganeshina O, Berry RW, Petralia RS, Nicholson DA, Geinisman Y (2004) Differences in the expression of AMPA and NMDA receptors between axospinous perforated and nonperforated synapses are related to the configuration and size of postsynaptic densities. J Comp Neurol 468:86–95

    Article  PubMed  CAS  Google Scholar 

  • Geiger JR, Jonas P (2000) Dynamic control of presynaptic Ca2+ inflow by fast-inactivating K(+) channels in hippocampal mossy fiber boutons. Neuron 28:927–939

    Article  PubMed  CAS  Google Scholar 

  • Geinisman Y (1993) Perforated axospinous synapses with multiple, completely partitioned transmission zones: probable structural intermediates in synaptic plasticity. Hippocampus 3:417–433

    Article  PubMed  CAS  Google Scholar 

  • Geinisman Y (2000) Structural synaptic modifications associated with hippocampal LTP and behavioral learning. Cereb Cortex 10:952–962

    Article  PubMed  CAS  Google Scholar 

  • Ghijsen WE, Leenders AG (2005) Differential signaling in presynaptic neurotransmitter release. Cell Mol Life Sci 62:937–954

    Article  PubMed  CAS  Google Scholar 

  • Gupta A, Wang Y, Markram H (2000) Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. Science 287:273–278

    Article  PubMed  CAS  Google Scholar 

  • Hallermann S, Pawlu C, Jonas P, Heckmann M (2003) A large pool of releasable vesicles in a cortical glutamatergic synapse. Proc Natl Acad Sci USA 100:8975–8980

    Article  PubMed  CAS  Google Scholar 

  • Hamori J, Somogyi J (1983) Differentiation of cerebellar mossy fiber synapses in the rat: a quantitative electron microscope study. J Comp Neurol 220:365–377

    Article  PubMed  CAS  Google Scholar 

  • Harris KM, Kater SB (1994) Dendritic spines: cellular specializations imparting both stability and flexibility to synaptic function. Annu Rev Neurosci 17:341–371

    Article  PubMed  CAS  Google Scholar 

  • Harris KM, Stevens JK (1989) Dendritic spines of CA 1 pyramidal cells in the rat hippocampus: serial electron microscopy with reference to their biophysical characteristics. J Neurosci 9:2982–2997

    PubMed  CAS  Google Scholar 

  • Harris KM, Sultan P (1995) Variation in the number, location and size of synaptic vesicles provides an anatomical basis for the nonuniform probability of release at hippocampal CA1 synapses. Neuropharmacology 34:1387–1395

    Article  PubMed  CAS  Google Scholar 

  • Held H (1898) Die zentrale Gehörleitung. Arch Anat Physiol, Anat Abt: 201–248

    Google Scholar 

  • Helmchen F, Borst JG, Sakmann B (1997) Calcium dynamics associated with a single action potential in a CNS presynaptic terminal. Biophys J 72:1458–1471

    PubMed  CAS  Google Scholar 

  • Henze DA, Buzsaki G (2001) Action potential threshold of hippocampal pyramidal cells in vivo is increased by recent spiking activity. Neuroscience 105:121–130

    Article  PubMed  CAS  Google Scholar 

  • Henze DA, McMahon DB, Harris KM, Barrionuevo G (2002) Giant miniature EPSCs at the hippocampal mossy fiber to CA3 pyramidal cell synapse are monoquantal. J Neurophysiol 87:15–29

    PubMed  Google Scholar 

  • Hoffpauir BK, Grimes JL, Mathers PH, Spirou GA (2006) Synaptogenesis of the Calyx of Held: rapid onset of function and one-to-one morphological innervation. J Neurosci 26:5511–5523

    Article  PubMed  CAS  Google Scholar 

  • Honda T, Sakisaka T, Yamada T, Kumazawa N, Hoshino T, Kajita M, Kayahara T, Ishizaki H, Tanaka-Okamoto M, Mizoguchi A, Manabe T, Miyoshi J, Takai Y (2006) Involvement of nectins in the formation of puncta adherentia junctions and the mossy fiber trajectory in the mouse hippocampus. Mol Cell Neurosci 31:315–325

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa T, Sahara Y, Takahashi T (2002) A single packet of transmitter does not saturate postsynaptic glutamate receptors. Neuron 34:613–621

    Article  PubMed  CAS  Google Scholar 

  • Jakab RL (1989) Three-dimensional reconstruction and synaptic architecture of cerebellar glomeruli in the rat. Acta Morphol Hung 37:11–20

    PubMed  CAS  Google Scholar 

  • Jakab RL, Hamori J (1988) Quantitative morphology and synaptology of cerebellar glomeruli in the rat. Anat Embryol (Berl) 179:81–88

    Article  CAS  Google Scholar 

  • Kandler K, Friauf E (1993) Pre- and postnatal development of efferent connections of the cochlear nucleus in the rat. J Comp Neurol 328:161–184

    Article  PubMed  CAS  Google Scholar 

  • Köhr G (2006) NMDA receptor function: subunit composition versus spatial distribution. Cell Tissue Res (DOI 10.1007/s00441-006-0273-6, this issue)

  • Markram H (1997) A network of tufted layer 5 pyramidal neurons. Cereb Cortex 7:523–533

    Article  PubMed  CAS  Google Scholar 

  • Markram H, Lübke J, Frotscher M, Roth A, Sakmann B (1997) Physiology and anatomy of synaptic connections between thick tufted pyramidal neurones in the developing rat neocortex. J Physiol (Lond) 500:409–440

    CAS  Google Scholar 

  • Markram H, Wang Y, Tsodyks M (1998) Differential signaling via the same axon of neocortical pyramidal neurons. Proc Natl Acad Sci USA 95:5323–5328

    Article  PubMed  CAS  Google Scholar 

  • Markram H, Toledo-Rodriguez M, Wang Y, Gupta A, Silberberg G, Wu C (2004) Interneurons of the neocortical inhibitory system. Nat Rev Neurosci 5:793–807

    Article  PubMed  CAS  Google Scholar 

  • Marrone DF, LeBoutillier JC, Petit TL (2005) Ultrastructural correlates of vesicular docking in the rat dentate gyrus. Neurosci Lett 378:92–97

    Article  PubMed  CAS  Google Scholar 

  • Meinrenken CJ, Borst JG, Sakmann B (2002) Calcium secretion coupling at Calyx of Held governed by nonuniform channel-vesicle topography. J Neurosci 22:1648–1667

    PubMed  CAS  Google Scholar 

  • Mironov SL (2006) Spontaneous and evoked neuronal activities regulate movements of single neuronal mitochondria. Synapse 59:403–411

    Article  PubMed  CAS  Google Scholar 

  • Nicol MJ, Walmsley B (2002) Ultrastructural basis of synaptic transmission between endbulbs of Held and bushy cells in the rat cochlear nucleus. J Physiol (Lond) 539:713–723

    Article  CAS  Google Scholar 

  • Nusser Z, Lujan R, Laube G, Roberts JD, Molnar E, Somogyi P (1998) Cell type and pathway dependence of synaptic AMPA receptor number and variability in the hippocampus. Neuron 21:545–559

    Article  PubMed  CAS  Google Scholar 

  • Oliet SH, Piet R, Poulain DA, Theodosis DT (2004) Glial modulation of synaptic transmission: insights from the supraoptic nucleus of the hypothalamus. Glia 47:258–267

    Article  PubMed  Google Scholar 

  • Petralia RS, Wang YX, Wenthold RJ (2002) NMDA receptors and PSD-95 are found in attachment plaques in cerebellar granular layer glomeruli. Eur J Neurosci 15:583–587

    Article  PubMed  Google Scholar 

  • Pierce JP, Mendell LM (1993) Quantitative ultrastructure of Ia boutons in the ventral horn: scaling and positional relationships. J Neurosci 13:4748–4763

    PubMed  CAS  Google Scholar 

  • Pinheiro P, Mulle C (2006) Kainate receptors. Cell Tissue Res (DOI 10.1007/s00441-006-0265-6, this issue)

  • Ramon y Cajal S (1911) Histology of the nervous system of man and vertebrates. Oxford University Press, New York

    Google Scholar 

  • Rettig J, Neher E (2002) Emerging roles of presynaptic proteins in Ca2+-triggered exocytosis. Science 298:781–785

    Article  PubMed  CAS  Google Scholar 

  • Rizzoli SO, Betz WJ (2004) The structural organization of the readily releasable pool of synaptic vesicles. Science 303:2037–2039

    Article  PubMed  CAS  Google Scholar 

  • Rizzoli SO, Betz WJ (2005) Synaptic vesicle pools. Nat Rev Neurosci 6:57–69

    Article  PubMed  CAS  Google Scholar 

  • Rizzuto R, Bernardi P, Pozzan T (2000) Mitochondria as all-round players of the calcium game. J Physiol (Lond) 529:37–47

    Article  CAS  Google Scholar 

  • Rollenhagen A, Söhl L, Roth A, Ohana O, Sätzler K, Sakmann B, Frotscher M, Lübke JHR (2003) Morphology of central synapses: from structure to function. Society of Neuroscience Abstracts S. A122.1

  • Rollenhagen A, Söhl L, Roth A, Sätzler K, Jonas P, Frotscher M, Lübke JHR (2004) Three-dimensional morphology of a central excitatory synapse: the mossy fiber bouton. FENS Forum Abstracts. S. A119.10

  • Rose O, Grund C, Reinhardt S, Starzinski-Powitz A, Franke WW (1995) Contactus adherens, a special type of plaque-bearing adhering junction containing M-cadherin, in the granule cell layer of the cerebellar glomerulus. Proc Natl Acad Sci USA 92:6022–6026

    Article  PubMed  CAS  Google Scholar 

  • Rosenmund C, Stern-Bach Y, Stevens CF (1998) The tetrameric structure of a glutamate receptor channel. Science 280:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Rowland KC, Irby NK, Spirou GA (2000) Specialized synapse-associated structures within the Calyx of Held. J Neurosci 20:9135–9144

    PubMed  CAS  Google Scholar 

  • Ryugo DK, Pongstaporn T, Huchton DM, Niparko JK (1997) Ultrastructural analysis of primary endings in deaf white cats: morphologic alterations in endbulbs of Held. J Comp Neurol 385:230–244

    Article  PubMed  CAS  Google Scholar 

  • Sätzler K, Söhl LF, Bollmann JH, Borst JG, Frotscher M, Sakmann B, Lübke JH (2002) Three-dimensional reconstruction of a Calyx of Held and its postsynaptic principal neuron in the medial nucleus of the trapezoid body. J Neurosci 22:10567–10579

    PubMed  Google Scholar 

  • Sahara Y, Takahashi T (2001) Quantal components of the excitatory postsynaptic currents at a rat central auditory synapse. J Physiol (Lond) 536:189–197

    Article  CAS  Google Scholar 

  • Saviane C, Silver RA (2006) Fast vesicle reloading and a large pool sustain high bandwidth transmission at a central synapse. Nature 439:983–987

    Article  PubMed  CAS  Google Scholar 

  • Schikorski T, Stevens CF (1997) Quantitative ultrastructural analysis of hippocampal excitatory synapses. J Neurosci 17:5858–5867

    PubMed  CAS  Google Scholar 

  • Schneggenburger R, Neher E (2000) Intracellular calcium dependence of transmitter release rates at a fast central synapse. Nature 406:889–893

    Article  PubMed  CAS  Google Scholar 

  • Schneggenburger R, Meyer AC, Neher E (1999) Released fraction and total size of a pool of immediately available transmitter quanta at a Calyx synapse. Neuron 23:399–409

    Article  PubMed  CAS  Google Scholar 

  • Schneggenburger R, Sakaba T, Neher E (2002) Vesicle pools and short-term synaptic depression: lessons from a large synapse. Trends Neurosci 25:206–212

    Article  PubMed  CAS  Google Scholar 

  • Schoch S, Gundelfinger ED (2006) Molecular organization of the presynaptic active zone. Cell Tissue Res (DOI 10.1007/s00441-006-0244-y, this issue)

  • Sikora MA, Gottesman J, Miller RF (2005) A computational model of the ribbon synapse. J Neurosci Methods 145:47–61

    Article  PubMed  Google Scholar 

  • Silver RA, Colquhoun D, Cull-Candy SG, Edmonds B (1996) Deactivation and desensitization of non-NMDA receptors in patches and the time course of EPSCs in rat cerebellar granule cells. J Physiol (Lond) 493:167–173

    CAS  Google Scholar 

  • Silver RA, Lübke J, Sakmann B, Feldmeyer D (2003) High-probability uniquantal transmission at excitatory synapses in barrel cortex. Science 302:1981–1984

    Article  PubMed  CAS  Google Scholar 

  • Smith GD (2001) Modeling local and global calcium signals using reaction diffusion equitations. In: De Schutter E (ed) Computational neuroscience. CRC Press, Boca Raton, pp 49–85

    Google Scholar 

  • Sorra KE, Harris KM (1993) Occurrence and three-dimensional structure of multiple synapses between individual radiatum axons and their target pyramidal cells in hippocampal area CA1. J Neurosci 13:3736–3748

    PubMed  CAS  Google Scholar 

  • Spacek J, Harris KM (1998) Three-dimensional organization of cell adhesion junctions at synapses and dendritic spines in area CA1 of the rat hippocampus. J Comp Neurol 393:58–68

    Article  PubMed  CAS  Google Scholar 

  • Sprengel R (2006) Role of AMPA receptors in synaptic plasticity. Cell Tissue Res (DOI 10.1007/s00441-006-0275-4, this issue)

  • Südhof TC (2004) The synaptic vesicle cycle. Annu Rev Neurosci 27:509–547

    Article  PubMed  CAS  Google Scholar 

  • Sun JY, Wu LG (2001) Fast kinetics of exocytosis revealed by simultaneous measurements of presynaptic capacitance and postsynaptic currents at a central synapse. Neuron 30:171–182

    Article  PubMed  CAS  Google Scholar 

  • Szabadics J, Varga C, Molnar G, Olah S, Barzo P, Tamas G (2006) Excitatory effect of GABAergic axo-axonic cells in cortical microcircuits. Science 311:233–235

    Article  PubMed  CAS  Google Scholar 

  • Takahashi T, Forsythe ID, Tsujimoto T, Barnes-Davies M, Onodera K (1996) Presynaptic calcium current modulation by a metabotropic glutamate receptor. Science 274:594–597

    Article  PubMed  CAS  Google Scholar 

  • Thomson AM, Bannister AP (2003) Interlaminar connections in the neocortex. Cereb Cortex 13:5–14

    Article  PubMed  Google Scholar 

  • Verkhratsky A, Kettenmann H (1996) Calcium signalling in glial cells. Trends Neurosci 19:346–352

    Article  PubMed  CAS  Google Scholar 

  • Verstreken P, Ly CV, Venken KJ, Koh TW, Zhou Y, Bellen HJ (2005) Synaptic mitochondria are critical for mobilization of reserve pool vesicles at Drosophila neuromuscular junctions. Neuron 47:365–378

    Article  PubMed  CAS  Google Scholar 

  • von Gersdorff H, Borst JG (2002) Short-term plasticity at the Calyx of Held. Nat Rev Neurosci 3:53–64

    Article  CAS  Google Scholar 

  • Wang Y, Gupta A, Markram H (1999) Anatomical and functional differentiation of glutamatergic synaptic innervation in the neocortex. J Physiol (Paris) 93:305–317

    Article  CAS  Google Scholar 

  • Wang Y, Markram H, Goodman PH, Berger TK, Ma J, Goldman-Rakic PS (2006) Heterogeneity in the pyramidal network of the medial prefrontal cortex. Nat Neurosci 9:534–542

    Article  PubMed  CAS  Google Scholar 

  • Wimmer VC, Horstmann H, Groh A, Kuner T (2006) Donut-like topology of synaptic vesicles with a central cluster of mitochondria wrapped into membrane protrusions: a novel structure-function module of the adult Calyx of Held. J Neurosci 26:109–116

    Article  PubMed  CAS  Google Scholar 

  • Wu LG, Borst JG (1999) The reduced release probability of releasable vesicles during recovery from short-term synaptic depression. Neuron 23:821–832

    Article  PubMed  CAS  Google Scholar 

  • Xu-Friedman MA, Regehr WG (2003) Ultrastructural contributions to desensitization at cerebellar mossy fiber to granule cell synapses. J Neurosci 23:2182–2192

    PubMed  CAS  Google Scholar 

  • Xu-Friedman MA, Regehr WG (2004) Structural contributions to short-term synaptic plasticity. Physiol Rev 84:69–85

    Article  PubMed  CAS  Google Scholar 

  • Xu-Friedman MA, Harris KM, Regehr WG (2001) Three-dimensional comparison of ultrastructural characteristics at depressing and facilitating synapses onto cerebellar Purkinje cells. J Neurosci 21:6666–6672

    PubMed  CAS  Google Scholar 

  • Yamada WM, Zucker RS (1992) Time course of transmitter release calculated from simulations of a calcium diffusion model. Biophys J 61:671–682

    Article  PubMed  CAS  Google Scholar 

  • Yamada A, Irie K, Deguchi-Tawarada M, Ohtsuka T, Takai Y (2003) Nectin-dependent localization of synaptic scaffolding molecule (S-SCAM) at the puncta adherentia junctions formed between the mossy fibre terminals and the dendrites of pyramidal cells in the CA3 area of the mouse hippocampus. Genes Cells 8:985–994

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Barbara Joch, Sigrun Nestel, and Eva Nicksch for excellent technical assistance and their extraordinary skills in producing large series of ultrathin sections, to Drs. Kurt Sätzler, Arnd Roth, Leander Söhl, and Achim Heinz for their substantial contribution to our work. We also thank Profs. Karl Zilles, William Betz, Jens Rettig, and Michael Frotscher, and Drs. Dirk Feldmeyer and Nicola Palomero-Gallagher for reading the manuscript and for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim H. R. Lübke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rollenhagen, A., Lübke, J.H.R. The morphology of excitatory central synapses: from structure to function. Cell Tissue Res 326, 221–237 (2006). https://doi.org/10.1007/s00441-006-0288-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-006-0288-z

Keywords

Navigation