Skip to main content

Advertisement

Log in

Current perspectives on the genetic causes of neural tube defects

  • Review Article
  • Published:
Neurogenetics Aims and scope Submit manuscript

Abstract

Neural tube defects (NTDs) are a group of severe congenital abnormalities resulting from the failure of neurulation. The pattern of inheritance of these complex defects is multifactorial, making it difficult to identify the underlying causes. Scientific research has rapidly progressed in experimental embryology and molecular genetics to elucidate the basis of neurulation. Crucial mechanisms of neurulation include the planar cell polarity pathway, which is essential for the initiation of neural tube closure, and the sonic hedgehog signaling pathway, which regulates neural plate bending. Genes influencing neurulation have been investigated for their contribution to human neural tube defects, but only genes with well-established role in convergent extension provide an exciting new set of candidate genes. Biochemical factors such as folic acid appear to be the greatest modifiers of NTDs risk in the human population. Consequently, much research has focused on genes of folate-related metabolic pathways. Variants of several such genes have been found to be significantly associated with the risk of neural tube defects in more studies. In this manuscript, we reviewed the current perspectives on the causes of neural tube defects and highlighted that we are still a long way from understanding the etiology of these complex defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

NTDs:

Neural tube defects

AED:

Antiepileptic drug

CRs:

Cysteine-rich domains

BMP:

Bone morphogenetic protein

FGF:

Fibroblast growth factor

FGFR:

Fibroblast growth factor receptor

IGF:

Insulin-like growth factor

DV:

Dorsoventral

AP:

Anteroposterior

RA:

Retinoic acid

Shh:

Sonic hedgehog

b-HLH:

Basic helix-loop-helix

RARs:

Retinoic acid receptors

PCP:

Planar cell polarity

MHP:

Median hinge point

DLHPs:

Dorsolateral hinge points

GCPS:

Greig cephalopolysyndactyly syndrome

HPE:

Holoprosencephaly

BM:

Body mass

Hcy:

Homocysteine

THF:

Tetrahydrofolate

LDL:

Low-density lipoprotein

PKC:

Protein kinase C

References

  1. Lary JM, Edmonds LD (1996) Prevalence of spina bifida at birth—United States, 1983–1990: a comparison of two surveillance systems. MMWR CDC Surveill Summ 45:15–26

    CAS  Google Scholar 

  2. Lynch SA (2005) Non-multifactorial neural tube defects. Am J Med Genet C Semin Med Genet 135:69–76

    PubMed  Google Scholar 

  3. Risch N (1990) Linkage strategies for genetically complex traits. II. The power of affected relative pairs. Am J Hum Genet 46:229–241

    PubMed  CAS  Google Scholar 

  4. Partington MD, McLone DG (1995) Hereditary factors in the etiology of neural tube defects. Results of a survey. Pediatr Neurosurg 23:311–316

    Article  PubMed  CAS  Google Scholar 

  5. Byrne J, Carolan S (2006) Adverse reproductive outcomes among pregnancies of aunts and (spouses of) uncles in Irish families with neural tube defects. Am J Med Genet A 140:52–61

    PubMed  Google Scholar 

  6. Sadler TW (2005) Embryology of neural tube development. Am J Med Genet C Semin Med Genet 135:2–8

    PubMed  CAS  Google Scholar 

  7. Colas JF, Schoenwolf GC (2003) Towards a cellular and molecular understanding of neurulation. Nat Rev Genet 4:784–793

    Google Scholar 

  8. Schoenwolf GC, Smith JL (2000) Mechanisms of neurulation. Methods Mol Biol 136:125–134

    PubMed  CAS  Google Scholar 

  9. O’Rahilly R, Muller F (1994) Neurulation in the normal human embryo: neural tube defects. Ciba Found Symp 181:70–89

    PubMed  CAS  Google Scholar 

  10. Copp AJ, Greene NDE, Murdoch JN (2003) The genetic basis of mammalian neurulation. Nat Rev Genet 4:784–793

    PubMed  Google Scholar 

  11. Juriloff DM, Harris MJ, Tom C, MacDonald KB (1991) Normal mouse strains differ in the site of initiation of closure of the cranial neural tube. Teratology 44:225–233

    PubMed  CAS  Google Scholar 

  12. van Allen MI, Kalousek DK, Chernoff GF, Juroff D, Harris M, McGillivray BC, Young S-L, Langlois S, MacLeod PM, Chitayat D et al (1993) Evidence for multi-site closure of the neural tube in humans. Am J Med Genet 47:723–743

    PubMed  Google Scholar 

  13. Nakatsu T, Uwabe C, Shiota K (2000) Neural tube closure in humans initiates at multiple sites: evidence from human embryos and implications for the pathogenesis of neural tube defects. Anat Embryol (Berl) 201:455–466

    CAS  Google Scholar 

  14. O’Rahilly R, Muller F (2002) The two sites of fusion of the neural folds and the two neuropores in the human embryo. Teratology 65:162–170

    PubMed  CAS  Google Scholar 

  15. Spemann H, Mangold H (2001) Induction of embryonic primordia by implantation of organizers from a different species. 1923. Int J Dev Biol 45:13–38

    PubMed  CAS  Google Scholar 

  16. De Robertis EM, Larrain J, Oelgeschlager M, Wessely O (2000) The establishment of Spemann’s organizer and patterning of the vertebrate embryo. Nat Rev Genet 1:171–181

    PubMed  Google Scholar 

  17. Oelgeschlager M, Kuroda H, Reversade B, De Robertis EM (2003) Chordin is required for the Spemann organizer transplantation phenomenon in Xenopus embryos. Dev Cell 4:219–230

    PubMed  CAS  Google Scholar 

  18. Sasai Y, Lu B, Steinbeisser H, Geissert D, Gont LK, De Robertis EM (1994) Xenopus chordin: a novel dorsalizing factor activated by organizer-specific homeobox genes. Cell 79:779–790

    PubMed  CAS  Google Scholar 

  19. Larrain J, Bachiller D, Lu B, Agius E, Piccolo S, De Robertis EM (2000) BMP-binding modules in chordin: a model for signalling regulation in the extracellular space. Development 127:821–830

    PubMed  CAS  Google Scholar 

  20. Hawley SH, Wunnenberg-Stapleton K, Hashimoto C, Laurent MN, Watabe T, Blumberg BW, Cho KW (1995) Disruption of BMP signals in embryonic Xenopus ectoderm leads to direct neural induction. Genes Dev 9:2923–2935

    PubMed  CAS  Google Scholar 

  21. Hemmati-Brivanlou A, Kelly OG, Melton DA (1994) Follistatin, an antagonist of activin, is expressed in the Spemann organizer and displays direct neuralizing activity. Cell 77:283–295

    PubMed  CAS  Google Scholar 

  22. Weinstein DC, Hemmati-Brivanlou A (1999) Neural induction. Annu Rev Cell Dev Biol 15:411–433

    PubMed  CAS  Google Scholar 

  23. Linker C, Stern CD (2004) Neural induction requires BMP inhibition only as a late step, and involves signals other than FGF and Wnt antagonists. Development 131:5671–5681

    PubMed  CAS  Google Scholar 

  24. Lamb TM, Knecht AK, Smith WC, Stachel SE, Economides AN, Stahl N, Yancopolous GD, Harland RM (1993) Neural induction by the secreted polypeptide noggin. Science 262:713–718

    PubMed  CAS  Google Scholar 

  25. Bouwmeester T, Kim S-H, Sasai Y, Lu B, de Robertis EM (1996) Cerberus is a head-inducing secreted factor expressed in the anterior endoderm of Spemann’s organizer. Nature 382:595–601

    PubMed  CAS  Google Scholar 

  26. Hansen CS, Marion CD, Steele K, George S, Smith WC (1997) Direct neural induction and selective inhibition of mesoderm and epidermis inducers by Xnr3. Development 124:483–492

    PubMed  CAS  Google Scholar 

  27. Chang C, Holtzman DA, Chau S, Chickering T, Woolf EA, Holmgren LM, Bodorova J, Gearing DP, Holmes WE, Brivanlou AH (2001) Twisted gastrulation can function as a BMP antagonist. Nature 410:483–487

    PubMed  CAS  Google Scholar 

  28. Wessely O, Agius E, Oelgeschlager M, Pera EM, De Robertis EM (2001) Neural induction in the absence of mesoderm: beta-catenin-dependent expression of secreted BMP antagonists at the blastula stage in Xenopus. Dev Biol 234:161–173

    PubMed  CAS  Google Scholar 

  29. Baird A, Bohlen P (1990) Fibroblast growth factors. In: Sporn MC, Roberts AB (eds) Peptide growth factors and their receptors. Springer, Berlin Heidelberg New York, pp 369–418

    Google Scholar 

  30. Streit A, Berliner AJ, Papanayotou C, Sirulnik A, Stern CD (2000) Initiation of neural induction by FGF signalling before gastrulation. Nature 406:74–78

    PubMed  CAS  Google Scholar 

  31. Wilson SI, Graziano E, Harland R, Jessell TM, Edlund T (2000) An early requirement for FGF signalling in the acquisition of neural cell fate in the chick embryo. Curr Biol 10:421–429

    PubMed  CAS  Google Scholar 

  32. Launay C, Fromentoux V, Shi DL, Boucaut JC (1996) A truncated FGF receptor blocks neural induction by endogenous Xenopus inducers. Development 122:869–880

    PubMed  CAS  Google Scholar 

  33. Nelson WJ, Nusse R (2004) Convergence of Wnt, beta-catenin, and cadherin pathways. Science 303:1483–1487

    PubMed  CAS  Google Scholar 

  34. Gomez-Skarmeta JL, de la Calle-Mustienes E, Modolell J (2001) The Wnt-activated Xiro1 gene encodes a repressor that is essential for neural development and downregulates Bmp4. Development 128:551–560

    PubMed  CAS  Google Scholar 

  35. Pera EM, Wessely O, Li SY, De Robertis EM (2001) Neural and head induction by insulin-like growth factor signals. Dev Cell 1:655–665

    PubMed  CAS  Google Scholar 

  36. Pera EM, Ikeda A, Eivers E, De Robertis EM (2003) Integration of IGF, FGF, and anti-BMP signals via Smad1 phosphorylation in neural induction. Genes Dev 17:3023–3028

    PubMed  CAS  Google Scholar 

  37. Matzuk MM, Lu N, Vogel H, Sellheyer K, Roop DR, Bradley A (1995) Multiple defects and perinatal death in mice deficient in follistatin. Nature 374:360–363

    PubMed  CAS  Google Scholar 

  38. McMahon JA, Takada S, Zimmerman LB, Fan CM, Harland RM, McMahon AP (1998) Noggin-mediated antagonism of BMP signaling is required for growth and patterning of the neural tube and somite. Genes Dev 12:1438–1452

    PubMed  CAS  Google Scholar 

  39. Simpson EH, Johnson DK, Hunsicker P, Suffolk R, Jordan SA, Jackson IJ (1999) The mouse Cer1 (Cerberus related or homologue) gene is not required for anterior pattern formation. Dev Biol 213:202–206

    PubMed  CAS  Google Scholar 

  40. Bachiller D, Klingensmith J, Kemp C, Belo JA, Anderson RM, May SR, McMahon JA, McMahon AP, Harland RM, Rossant J, DE Robertis EM (2000) The organizer factors Chordin and Noggin are required for mouse forebrain development. Nature 403:658–661

    PubMed  CAS  Google Scholar 

  41. Schulte-Merker S, Lee KJ, McMahon AP, Hammerschmidt M (1997) The zebrafish organizer requires chordino. Nature 387:862–863

    PubMed  CAS  Google Scholar 

  42. Winnier G, Blessing M, Labosky PA, Hogan BL (1995) Bone morphogenetic protein-4 is required for mesoderm formation and patterning in the mouse. Genes Dev 9:2105–2116

    PubMed  CAS  Google Scholar 

  43. Zhang H, Bradley A (1996) Mice deficient for BMP2 are nonviable and have defects in amnion/chorion and cardiac development. Development 122:2977–2986

    PubMed  CAS  Google Scholar 

  44. Dudley AT, Lyons KM, Robertson EJ (1995) A requirement for bone morphogenetic protein-7 during development of the mammalian kidney and eye. Genes Dev 9:2795–2807

    PubMed  CAS  Google Scholar 

  45. Luo G, Hofmann C, Bronckers AL, Sohocki M, Bradley A, Karsenty G (1995) BMP-7 is an inducer of nephrogenesis, and is also required for eye development and skeletal patterning. Genes Dev 9:2808–2820

    PubMed  CAS  Google Scholar 

  46. Chang H, Huylebroeck D, Verschueren K, Guo Q, Matzuk MM, Zwijsen A (1999) Smad5 knockout mice die at mid-gestation due to multiple embryonic and extraembryonic defects. Development 126:1631–1642

    PubMed  CAS  Google Scholar 

  47. Tremblay KD, Dunn NR, Robertson EJ (2001) Mouse embryos lacking Smad1 signals display defects in extra-embryonic tissues and germ cell formation. Development 128:3609–3621

    PubMed  CAS  Google Scholar 

  48. Felder B, Stegmann K, Schultealbert A, Geller F, Strehl E, Ermert A, Koch MC (2002) Evaluation of BMP4 and its specific inhibitor NOG as candidates in human neural tube defects (NTDs). Eur J Hum Genet 10:53–56

    Google Scholar 

  49. Wallingford JB, Harland RM (2002) Neural tube closure requires Dishevelled-dependent convergent extension of the midline. Development 129:5815–5825

    PubMed  CAS  Google Scholar 

  50. Wallingford JB, Fraser SE, Harland RM (2002) Convergent extension: the molecular control of polarized cell movement during embryonic development. Dev Cell 2:695–706

    PubMed  CAS  Google Scholar 

  51. Wallingford JB, Rowning BA, Vogeli KM, Rothbacher U, Fraser SE, Harland RM (2000) Dishevelled controls cell polarity during Xenopus gastrulation. Nature 405:81–85

    PubMed  CAS  Google Scholar 

  52. Keller R (2002) Shaping the vertebrate body plan by polarized embryonic cell movements. Science 298:1950–1954

    PubMed  CAS  Google Scholar 

  53. Heisenberg CP, Tada M, Rauch GJ, Saude L, Concha ML, Geisler R, Stemple DL, Smith JC, Wilson SW (2000) lberblick/Wnt11 mediates convergent extension movements during zebrafish gastrulation. Nature 405:76–81

    PubMed  CAS  Google Scholar 

  54. Tada M, Smith JC (2000) Xwnt11 is a target of Xenopus Brachyury: regulation of gastrulation movements via Dishevelled, but not through the canonical Wnt pathway. Development 127:2227–2238

    PubMed  CAS  Google Scholar 

  55. Wallingford JB, Harland RM (2001) Xenopus Dishevelled signaling regulates both neural and mesodermal convergent extension: parallel forces elongating the body axis. Development 128:2581–2592

    PubMed  CAS  Google Scholar 

  56. Ciruna B, Jenny A, Lee D, Mlodzik M, Schier AF (2006) Planar cell polarity signalling couples cell division and morphogenesis during neurulation. Nature 439:220–224

    PubMed  CAS  Google Scholar 

  57. Katoh M (2005) WNT/PCP signaling pathway and human cancer (review). Oncol Rep 14:1583–1588

    PubMed  CAS  Google Scholar 

  58. Saburi S, McNeill H (2005) Organising cells into tissues: new roles for cell adhesion molecules in planar cell polarity. Curr Opin Cell Biol 17:482–488

    PubMed  CAS  Google Scholar 

  59. Usui T, Shima Y, Shimada Y, Hirano S, Burgess RW, Schwarz TL, Takeichi M, Uemura T (1999) Flamingo, a seven-pass transmembrane cadherin, regulates planar cell polarity under the control of Frizzled. Cell 98:585–595

    PubMed  CAS  Google Scholar 

  60. Jenny A, Darken RS, Wilson PA, Mlodzik M (2003) Prickle and Strabismus form a functional complex to generate a correct axis during planar cell polarity signaling. EMBO J 22:4409–4420

    PubMed  CAS  Google Scholar 

  61. Wolff T, Rubin GM (1998) Strabismus, a novel gene that regulates tissue polarity and cell fate decisions in Drosophila. Development 125:1149–1159

    PubMed  CAS  Google Scholar 

  62. Gubb D, Green C, Huen D, Coulson D, Johnson G, Tree D, Collier S, Roote J (1999) The balance between isoforms of the prickle LIM domain protein is critical for planar polarity in Drosophila imaginal discs. Genes Dev 13:2315–2327

    PubMed  CAS  Google Scholar 

  63. Feiguin F, Hannus M, Mlodzik M, Eaton S (2001) The ankyrin repeat protein Diego mediates Frizzled-dependent planar polarization. Dev Cell 1:93–101

    PubMed  CAS  Google Scholar 

  64. Strutt DI, Weber U, Mlodzik M (1997) The role of RhoA in tissue polarity and Frizzled signalling. Nature 387:292–295

    PubMed  CAS  Google Scholar 

  65. Winter CG, Wang B, Ballew A, Royou A, Karess R, Axelrod JD, Luo L (2001) Drosophila Rho-associated kinase (Drok) links Frizzled-mediated planar cell polarity signaling to the actin cytoskeleton. Cell 105:81–91

    PubMed  CAS  Google Scholar 

  66. Park TJ, Haigo SL, Wallingford JB (2006) Ciliogenesis defects in embryos lacking inturned or fuzzy function are associated with failure of planar cell polarity and Hedgehog signalling. Nat Genet 38:303–311

    PubMed  CAS  Google Scholar 

  67. Smith UM, Consugar M, Tee LJ, McKee BM, Maina EN, Whelan S, Morgan NV, Goranson E, Gissen P, Lilliquist S, Aligians IA, Ward CI, Pasha S, Punyashthiti R, Malik Sharif S, Batman PA, Bennett CP, Woods CG, McKeown C, Bucourt M, Miller CA, Cox P, Algazali M, Trembath RC, Torres VE, Attie-Bitah T, Kelly DA, Maher ER, Gattone VH, Harris PC, Jonhson CA (2006) The transmembrane protein meckelin (MKS3) is mutated in Meckel–Gruber syndrome and the wpk rat. Nat Genet 38:191–196

    PubMed  CAS  Google Scholar 

  68. Kyttala M, Tallila J, Salonen R, Kopra O, Kohlschmidt N, Paavola-Sakki P, Peltonen L, Kestila M (2006) MKS1, encoding a component of the flagellar apparatus basal body proteome, is mutated in Meckel syndrome. Nat Genet 38:155–157

    PubMed  Google Scholar 

  69. Smith LJ, Stein KF (1962) Axial elongation in the mouse and its retardation in homozygous looptail mice. J Embryol Exp Morphol 10:73–87

    PubMed  CAS  Google Scholar 

  70. Murdoch JN, Rachel RA, Shah S, Beermann F, Stanier P, Mason CA, Copp AJ (2001) Circletail, a new mouse mutant with severe neural tube defects: chromosomal localization and interaction with the loop-tail mutation. Genomics 78:55–63

    PubMed  CAS  Google Scholar 

  71. Curtin JA, Quint E, Tsipouri V, Arkell RM, Cattanach B, Copp AJ, Henderson DJ, Spurr N, Stanier P, Fisher EM, Nolam PM, Steel KP, Brown SD, Gray IC, Murdoch JN (2003) Mutation of Celsr1 disrupts planar polarity of inner ear hair cells and causes severe neural tube defects in the mouse. Curr Biol 13:1129–1133

    PubMed  CAS  Google Scholar 

  72. Lu X, Borchers AGM, Jolicoeur C, Rayburn H, Baker JC, Tessier-Lavigne M (2004) PTK7/CCK-4 is a novel regulator of planar cell polarity in vertebrates. Nature 430:93–98

    PubMed  CAS  Google Scholar 

  73. Hamblet NS, Lijam N, Ruiz-Lozano P, Wang J, Yang Y, Luo Z, Mei L, Chien KR, Sussman DJ, Wynshaw-Boris A (2002) Dishevelled 2 is essential for cardiac outflow tract development, somite segmentation and neural tube closure. Development 129:5827–5838

    PubMed  CAS  Google Scholar 

  74. Murdoch JN, Doudney K, Paternotte C, Copp AJ, Stanier P (2001) Severe neural tube defects in the loop-tail mouse result from mutation of Lpp1, a novel gene involved in floor plate specification. Hum Mol Genet 10:2593–2601

    PubMed  CAS  Google Scholar 

  75. Jessen JR, Solnica-Krezel L (2004) Identification and developmental expression pattern of van gogh-like 1, a second zebrafish strabismus homologue. Gene Expr Patterns 4:339–344

    PubMed  CAS  Google Scholar 

  76. Murdoch JN, Henderson DJ, Doudney K, Gaston-Massuet C, Phillips HM, Paternotte C, Arkell R, Stanier P, Copp AJ (2003) Disruption of scribble (Scrb1) causes severe neural tube defects in the circletail mouse. Hum Mol Genet 12:87–98

    PubMed  CAS  Google Scholar 

  77. Montcouquiol M, Rachel RA, Lanford PJ, Copeland NG, Jenkins NA, Kelley MW (2003) Identification of Vangl2 and Scrb1 as planar polarity genes in mammals. Nature 423:173–177

    PubMed  CAS  Google Scholar 

  78. Doudney K, Moore GE, Stanier P, Ybot-Gonzales P, Paternotte C, Greene ND, Copp AJ, Stevenson RE (2005) Analysis of the planar cell polarity gene Vangl2 and its co-expressed paralog Vangl1 in neural tube defects patients. Am J Med Genet A 138A:415

    Google Scholar 

  79. Holtfreter J, Hamburger V (1995) Embryogenesis: progressive differentiation. In: Willier H, Weiss PA, Hamburger V (eds) Analysis of development. Saunders, Philadelphia, PA, pp 230–296

    Google Scholar 

  80. Diez DC, Breitkreuz DN, Storey KG (2002) Onset of neuronal differentiation is regulated by paraxial mesoderm and requires attenuation of FGF signalling. Development 129:1681–1691

    Google Scholar 

  81. Diez DC, Olivera-Martinez I, Goriely A, Gale E, Maden M, Storey K (2003) Opposing FGF and retinoid pathways control ventral neural pattern, neuronal differentiation, and segmentation during body axis extension. Neuron 40:5–79

    Google Scholar 

  82. Novitch BG, Wichterle H, Jessel TM, Sockanathan S (2003) A requirement for retinoic acid-mediated transcriptional activation in ventral neural patterning and motor neuron specification. Neuron 40:81–95

    PubMed  CAS  Google Scholar 

  83. Marti E, Bumcrot DA, Takada R, McMahon AP (1995) Requirement of 19K form of Sonic hedgehog for induction of distinct ventral cell types in CNS explants. Nature 375:322–325

    PubMed  CAS  Google Scholar 

  84. Ericson J, Morton S, Kawakami A, Roelink H, Jessell TM (1996) Two critical periods of Sonic Hedgehog signaling required for the specification of motor neuron identity. Cell 87:661–673

    PubMed  CAS  Google Scholar 

  85. Roelink H, Porter JA, Chiang C, Tanabe Y, Chang DT, Beachy PA, Jessell TM (1995) Floor plate and motor neuron induction by different concentrations of the amino-terminal cleavage product of sonic hedgehog autoproteolysis. Cell 81:445–455

    PubMed  CAS  Google Scholar 

  86. Pierani A, Brenner-Morton S, Chiang C, Jessell TM (1999) A sonic hedgehog-independent, retinoid-activated pathway of neurogenesis in the ventral spinal cord. Cell 97:903–915

    PubMed  CAS  Google Scholar 

  87. Briscoe J, Sussel L, Serup P, Hartigan-O’Connor D, Jessell TM, Rubenstein JL, Ericso J (1999) Homeobox gene Nkx2.2 and specification of neuronal identity by graded Sonic hedgehog signalling. Nature 398:622–627

    PubMed  CAS  Google Scholar 

  88. Briscoe J, Pierani A, Jessell TM, Ericson J (2000) A homeodomain protein code specifies progenitor cell identity and neuronal fate in the ventral neural tube. Cell 101:435–445

    PubMed  CAS  Google Scholar 

  89. Ericson J, Rashbass P, Schedl A, Brenner-Morton S, Kawakami A, van Heyningen V, Jessell TM, Briscoe J (1997) Pax6 controls progenitor cell identity and neuronal fate in response to graded Shh signaling. Cell 90:169–180

    PubMed  CAS  Google Scholar 

  90. Ericson J, Briscoe J, Rashbass P, van Heyningen V, Jessell TM (1997) Graded sonic hedgehog signaling and the specification of cell fate in the ventral neural tube. Cold Spring Harb Symp Quant Biol 62:451–466

    PubMed  CAS  Google Scholar 

  91. Lee KJ, Jessell TM (1999) The specification of dorsal cell fates in the vertebrate central nervous system. Annu Rev Neurosci 22:261–294

    PubMed  CAS  Google Scholar 

  92. Lee KJ, Mendelsohn M, Jessell TM (1998) Neuronal patterning by BMPs: a requirement for GDF7 in the generation of a discrete class of commissural interneurons in the mouse spinal cord. Genes Dev 12:3394–3407

    PubMed  CAS  Google Scholar 

  93. Pierani A, Brenner-Morton S, Chiang C, Jessell TM (1999) A sonic hedgehog-independent, retinoid-activated pathway of neurogenesis in the ventral spinal cord. Cell 97:903–915

    PubMed  CAS  Google Scholar 

  94. Timmer JR, Wang C, Niswander L (2002) BMP signaling patterns the dorsal and intermediate neural tube via regulation of homeobox and helix-loop-helix transcription factors. Development 129:2459–2472

    PubMed  CAS  Google Scholar 

  95. Helms AW, Johnson JE (2003) Specification of dorsal spinal cord interneurons. Curr Opin Neurobiol 13:42–49

    PubMed  CAS  Google Scholar 

  96. Stoykova A, Gruss P (1994) Roles of Pax-genes in developing and adult brain as suggested by expression patterns. J Neurosci 14:1395–1412

    PubMed  CAS  Google Scholar 

  97. LaBonne C, Bronner-Fraser M (1999) Molecular mechanisms of neural crest formation. Annu Rev Cell Dev Biol 15:81–112

    PubMed  CAS  Google Scholar 

  98. Chalepakis G, Fritsch R, Fickenscher H, Deutsch U, Goulding M, Gruss P (1991) The molecular basis of the undulated/Pax-1 mutation. Cell 1(66):873–884

    Google Scholar 

  99. Gruss P, Walther C (1992) Pax in development. Cell 69:719–722

    PubMed  CAS  Google Scholar 

  100. Tassabehji M, Read AP, Newton VE, Patton M, Gruss P, Harris R, Strachan T (1993) Mutations in the PAX3 gene causing Waardenburg syndrome type 1 and type 2. Nat Genet 3:26–30

    PubMed  CAS  Google Scholar 

  101. Baldwin CT, Lipsky NR, Hoth CF, Cohen T, Mamuya W, Milunsky A (1994) Mutations in PAX3 associated with Waardenburg syndrome type I. Hum Mutat 3:205–211

    PubMed  CAS  Google Scholar 

  102. Morell R, Friedman TB, Moeljopawiro S, Hartono, Soewito, Asher JH (1992) A frameshift mutation in the HuP2 paired domain of the probable human homolog of murine Pax-3 is responsible for Waardenburg syndrome type 1 in an Indonesian family. Hum Mol Genet 1:243–247

    PubMed  CAS  Google Scholar 

  103. Quiring R, Walldorf U, Kloter U, Gehring WJ (1994) Homology of the eyeless gene of Drosophila to the Small eye gene in mice and Aniridia in humans. Science 265:785–789

    PubMed  CAS  Google Scholar 

  104. Mansouri A, Stoykova A, Torres M, Gruss P (1996) Dysgenesis of cephalic neural crest derivatives in Pax7−/− mutant mice. Development 122:831–838

    PubMed  CAS  Google Scholar 

  105. Hol FA, Geurds MP, Chatkupt S, Shugart YY, Balling R, Schrander-Stumpel CT, Johnson WG, Hamel BC, Mariman EC (1996) PAX genes and human neural tube defects: an amino acid substitution in PAX1 in a patient with spina bifida. J Med Genet 33:655–660

    Article  PubMed  CAS  Google Scholar 

  106. Nieuwkoop PD, Weijer CJ (1978) Neural induction, a two-way process. Med Biol 56:366–371

    PubMed  CAS  Google Scholar 

  107. Harland R (2000) Neural induction. Curr Opin Genet Dev 10:357–362

    PubMed  CAS  Google Scholar 

  108. Slack JM (1995) Developmental biology. Growth factor lends a hand. Nature 374:217–218

    PubMed  CAS  Google Scholar 

  109. Lamb TM, Harland RM (1995) Fibroblast growth factor is a direct neural inducer, which combined with noggin generates anterior–posterior neural pattern. Development 121:3627–3636

    PubMed  CAS  Google Scholar 

  110. Cox WG, Hemmati-Brivanlou A (1995) Caudalization of neural fate by tissue recombination and bFGF. Development 121:4349–4358

    PubMed  CAS  Google Scholar 

  111. Sive HL, Hattori K, Weintraub H (1989) Progressive determination during formation of the anteroposterior axis in Xenopus laevis. Cell 58:171–180

    PubMed  CAS  Google Scholar 

  112. Durston AJ, Timmermans JP, Hage WJ, Hendriks HF, de Vries NJ, Heideveld M, Nieuwkoop PD (1989) Retinoic acid causes an anteroposterior transformation in the developing central nervous system. Nature 340:140–144

    PubMed  CAS  Google Scholar 

  113. Sive HL, Draper BW, Harland RM, Weintraub H (1990) Identification of a retinoic acid-sensitive period during primary axis formation in Xenopus laevis. Genes Dev 4:932–942

    PubMed  CAS  Google Scholar 

  114. Altaba A, Jessell T (1991) Retinoic acid modifies mesodermal patterning in early Xenopus embryos. Genes Dev 5:175–187

    Google Scholar 

  115. Sive HL, Cheng P (1991) Retinoic acid perturbs the expression of Xhox.lab genes and alters mesodermal determination in Xenopus laevis. Genes Dev 5:1321–1332

    PubMed  CAS  Google Scholar 

  116. Papalopulu N, Kintner C (1996) A posteriorising factor, retinoic acid, reveals that anteroposterior patterning controls the timing of neuronal differentiation in Xenopus neuroectoderm. Development 122:3409–3418

    PubMed  CAS  Google Scholar 

  117. Blumberg B, Bolado J Jr, Derguin F, Craig AG, Moreno TA, Chakravarti D, Heyman RA, Buck J, Evans RM (1996) Novel retinoic acid receptor ligands in Xenopus embryos. Proc Natl Acad Sci USA 93:4873–4878

    PubMed  CAS  Google Scholar 

  118. de Roos K, Sonneveld E, Compaan B, ten Berge D, Durston AJ, van der Saag PT (1999) Expression of retinoic acid 4-hydroxylase (CYP26) during mouse and Xenopus laevis embryogenesis. Mech Dev 82:205–211

    PubMed  Google Scholar 

  119. Hollemann T, Chen Y, Grunz H, Pieler T (1998) Regionalized metabolic activity establishes boundaries of retinoic acid signalling. EMBO J 17:7361–7372

    PubMed  CAS  Google Scholar 

  120. Kudoh T, Wilson SW, Dawid IB (2002) Distinct roles for Fgf, Wnt and retinoic acid in posteriorizing the neural ectoderm. Development 129:4335–4346

    PubMed  CAS  Google Scholar 

  121. Chen Y, Pollet N, Niehrs C, Pieler T (2001) Increased XRALDH2 activity has a posteriorizing effect on the central nervous system of Xenopus embryos. Mech Dev 101:91–103

    PubMed  CAS  Google Scholar 

  122. Niederreither K, Subbarayan V, Dolle P, Chambon P (1999) Embryonic retinoic acid synthesis is essential for early mouse post-implantation development. Nat Genet 21:444–448

    PubMed  CAS  Google Scholar 

  123. Abu-Abed S, Dolle P, Metzger D, Beckett B, Chambon P, Petkovich M (2001) The retinoic acid-metabolizing enzyme, CYP26A1, is essential for normal hindbrain patterning, vertebral identity, and development of posterior structures. Genes Dev 15:226–240

    PubMed  CAS  Google Scholar 

  124. Shiotsugu J, Katsuyama Y, Arima K, Baxter A, Koide T, Song J, Chandraratna RA, Blumberg B (2004) Multiple points of interaction between retinoic acid and FGF signaling during embryonic axis formation. Development 131:2653–2667

    PubMed  CAS  Google Scholar 

  125. Deak KL, Dickerson ME, Linney E, Enterline DS, George TM, Melvin EC, Graham FL, Siegel DG, Hammock P, Mehltretter L, Bassuk AG, Kessler JA, Gilbert JR, Speer MC, NTD Collaborative Group (2005) Analysis of ALDH1A2, CYP26A1, CYP26B1, CRABP1, and CRABP2 in human neural tube defects suggests a possible association with alleles in ALDH1A2. Birth Defects Res A Clin Mol Teratol 73:868–875

    PubMed  CAS  Google Scholar 

  126. McGrew LL, Lai CJ, Moon RT (1995) Specification of the anteroposterior neural axis through synergistic interaction of the Wnt signaling cascade with noggin and follistatin. Dev Biol 172:337–342

    PubMed  CAS  Google Scholar 

  127. McGrew LL, Hoppler S, Moon RT (1997) Wnt and FGF pathways cooperatively pattern anteroposterior neural ectoderm in Xenopus. Mech Dev 69:105–114

    PubMed  CAS  Google Scholar 

  128. Bang AG, Papalopulu N, Goulding MD, Kintner C (1999) Expression of Pax-3 in the lateral neural plate is dependent on a Wnt-mediated signal from posterior nonaxial mesoderm. Dev Biol 212:366–380

    PubMed  CAS  Google Scholar 

  129. Fekany-Lee K, Gonzalez E, Miller-Bertoglio V, Solnica-Krezel L (2000) The homeobox gene bozozok promotes anterior neuroectoderm formation in zebrafish through negative regulation of BMP2/4 and Wnt pathways. Development 127:2333–2345

    PubMed  CAS  Google Scholar 

  130. Domingos PM, Itasak N, Jones CM, Mercurio S, Sargent MG, Smith JC, Krumlauf R (2001) The Wnt/beta-catenin pathway posteriorizes neural tissue in Xenopus by an indirect mechanism requiring FGF signalling. Dev Biol 239:148–160

    PubMed  CAS  Google Scholar 

  131. Schoenwolf GC, Smith JL (1990) Mechanisms of neurulation: traditional viewpoint and recent advances. Development 109:243–270

    PubMed  CAS  Google Scholar 

  132. Shum AS, Copp AJ (1996) Regional differences in morphogenesis of the neuroepithelium suggest multiple mechanisms of spinal neurulation in the mouse. Anat Embryol (Berl) 194:65–73

    CAS  Google Scholar 

  133. Ybot-Gonzalez P, Cogram P, Gerrelli D, Copp AJ (2002) Sonic hedgehog and the molecular regulation of neural tube closure. Development 129:2507–2517

    PubMed  CAS  Google Scholar 

  134. Echelard Y, Epstein DJ, Jacques B, Shen L, Mohler J, McMahon JA, McMahon AP (1993) Sonic hedgehog, a member of a family of putative signaling molecules, is implicated in the regulation of CNS polarity. Cell 75:1417–1430

    PubMed  CAS  Google Scholar 

  135. Goodrich LV, Milenkovic L, Higgins KM, Scott MP (1997) Altered neural cell fates and medulloblastoma in mouse patched mutants. Science 277:1109–1113

    PubMed  CAS  Google Scholar 

  136. Milenkovic L, Goodrich LV, Higgins KM, Scott MP (1999) Mouse patched1 controls body size determination and limb patterning. Development 126:4431–4440

    PubMed  CAS  Google Scholar 

  137. Ding Q, Motoyama J, Gasca S, Mo R, Sasaki H, Rossant J, Hui CC (1998) Diminished Sonic hedgehog signaling and lack of floor plate differentiation in Gli2 mutant mice. Development 125:2533–2543

    PubMed  CAS  Google Scholar 

  138. Lee CS, Sund NJ, Behr R, Herrera PL, Kaestner KH (2005) Foxa2 is required for the differentiation of pancreatic alpha-cells. Dev Biol 278:484–495

    PubMed  CAS  Google Scholar 

  139. Hui CC, Joyner AL (1993) A mouse model of greig cephalopolysyndactyly syndrome: the extra-toes mutation contains an intragenic deletion of the Gli3 gene. Nat Genet 3:241–246

    PubMed  CAS  Google Scholar 

  140. Huang Y, Roelink H, McKnight GS (2002) Protein kinase A deficiency causes axially localized neural tube defects in mice. J Biol Chem 277:19889–19896

    PubMed  CAS  Google Scholar 

  141. Gunther T, Struwe M, Aguzzi A, Schughart K (1994) Open brain, a new mouse mutant with severe neural tube defects, shows altered gene expression patterns in the developing spinal cord. Development 120:3119–3130

    PubMed  CAS  Google Scholar 

  142. Nagai T, Aruga J, Minowa O, Sugimoto T, Ohno Y, Noda T, Mikoshiba K (2000) Zic2 regulates the kinetics of neurulation. Proc Natl Acad Sci USA 97:1618–1623

    PubMed  CAS  Google Scholar 

  143. Eggenschwile JT, Espinoza E, Anderson KV (2001) Rab23 is an essential negative regulator of the mouse Sonic hedgehog signalling pathway. Nature 412:194–198

    Google Scholar 

  144. Wild A, Kalff-Suske M, Vortkamp A, Bornholdt D, Konig R, Grzeschik KH (1997) Point mutations in human GLI3 cause Greig syndrome. Hum Mol Genet 6:1979–1984

    PubMed  CAS  Google Scholar 

  145. Kalff-Suske M, Wild A, Topp J, Wessling M, Jacobsen EM, Bornholdt D, Engel H, Heuer H, Aalfs CM, Ausems MG, Barone R, Herzog A, Heutink P, Homfray T, Gillessen-Kaessbach G, Konig R, Kunze J, Meinecke P, Muller D, Rizzo R, Strenge S, Superti-Furga A, Grzeschik KH (1999) Point mutations throughout the GLI3 gene cause Greig cephalopolysyndactyly syndrome. Hum Mol Genet 8:1769–1777

    PubMed  CAS  Google Scholar 

  146. Radhakrishna U, Wild A, Grzeschik KH, Antonarakis SE (1997) Mutation in GLI3 in postaxial polydactyly type A. Nat Genet 17:269–271

    PubMed  CAS  Google Scholar 

  147. Johnston JJ, Olivos-Glander I, Killoran C, Elson E, Turner JT, Peters KF, Abbott MH, Aughton DJ, Aylsworth AS, Bamshad MJ, Booth C, Curry CJ, David A, Dinulos MB, Flannery DB, Fox MA, Graham JM, Grange DK, Guttmacher AE, Hannibal MC, Henn W, Hennekam RC, Holmes LB, Hoyme HE, Leppig KA, Lin AE, Macleod P, Manchester DK, Marcelis C, Mazzanti L, McCann E, McDonald MT, Mendelsohn NJ, Moeschler JB, Moghaddam B, Neri G, Newbury-Ecob R, Pagon RA, Phillips JA, Sadler LS, Stoler JM, Tilstra D, Walsh Vockley CM, Zackai EH, Zadeh TM, Brueton L, Black GC, Biesecker LG (2005) Molecular and clinical analyses of Greig cephalopolysyndactyly and Pallister-Hall syndromes: robust phenotype prediction from the type and position of GLI3 mutations. Am J Hum Genet 76:609–622

    PubMed  CAS  Google Scholar 

  148. Winter RM, Huson SM (1988) Greig cephalopolysyndactyly syndrome: a possible mouse homologue (Xt-extra toes). Am J Med Genet 31:793–798

    PubMed  CAS  Google Scholar 

  149. Nanni L, Ming JE, Bocian M, Steinhaus K, Bianchi DW, Die-Smulders C, Giannotti A, Imaizumi K, Jone KL, Campo MD, Martin RA, Meinecke P, Pierpont ME, Robin NH, Young ID, Roessler E, Muenke M (1999) The mutational spectrum of the sonic hedgehog gene in holoprosencephaly: SHH mutations cause a significant proportion of autosomal dominant holoprosencephaly. Hum Mol Genet 8:2479–2488

    PubMed  CAS  Google Scholar 

  150. Wallis DE, Muenke M (1999) Molecular mechanisms of holoprosencephaly. Mol Genet Metab 68:126–138

    PubMed  CAS  Google Scholar 

  151. Ming JE, Kaupas ME, Roessler E, Brunner HG, Golabi M, Tekin M, Stratton RF, Sujansky E, Bale SJ, Muenke M (2002) Mutations in PATCHED-1, the receptor for SONIC HEDGEHOG, are associated with holoprosencephaly. Hum Genet 110:97–301

    Google Scholar 

  152. Kirillova I, Novikova I, Auge J, Audollent S, Esnault D, Encha-Razavi F, Lazjuk G, Attie-Bitach T, Vekemans M (2000) Expression of the sonic hedgehog gene in human embryos with neural tube defects. Teratology 61:347–354

    PubMed  CAS  Google Scholar 

  153. Zhu H, Barber R, Shaw GM, Lammer EJ, Finnell RH (2003) Is Sonic hedgehog (SHH) a candidate gene for spina bifida? A pilot study. Am J Med Genet A 117:87–88

    PubMed  Google Scholar 

  154. Zhu H, Lu W, Laurent C, Shaw GM, Lammer EJ, Finnell RH (2005) Genes encoding catalytic subunits of protein kinase A and risk of spina bifida. Birth Defects Res A Clin Mol Teratol 73:591–596

    PubMed  CAS  Google Scholar 

  155. Klootwijk R, Groenen P, Schijvenaars M, Hol F, Hamel B, Straatman H, Steegers-Theunissen R, Mariman E, Franke B (2004) Genetic variants in ZIC1, ZIC2, and ZIC3 are not major risk factors for neural tube defects in humans. Am J Med Genet A 124:40–47

    PubMed  Google Scholar 

  156. Wallingford JB (2005) Neural tube closure and neural tube defects: studies in animal models reveal known knowns and known unknowns. Am J Med Genet C Semin Med Genet 135:59–68

    PubMed  Google Scholar 

  157. Brouns MR, Matheson SF, Hu KQ, Delalle I, Caviness VS, Silver J, Bronson RT, Settleman J (2000) The adhesion signaling molecule p190 RhoGAP is required for morphogenetic processes in neural development. Development 127:4891–4903

    PubMed  CAS  Google Scholar 

  158. Hildebrand D, Soriano P (1999) Shroom, a PDZ domain-containing actin-binding protein, is required for neural tube morphogenesis in mice. Cell 99:485–497

    PubMed  CAS  Google Scholar 

  159. Hildebrand R, Harland J, Wallingford JB (2003) Shroom induces apical constriction and is required for hingepoint formation during neural tube closure. Curr Biol 13:125–2137

    Google Scholar 

  160. Stumpo DJ, Bock CB, Tuttle JS, Blackshear PJ (1995) MARCKS deficiency in mice leads to abnormal brain development and perinatal death. Proc Natl Acad Sci USA 92:944–948

    PubMed  CAS  Google Scholar 

  161. Chen J, Chang S, Duncan SA, Okano HJ, Fishell G, Aderem A (1996) Disruption of the MacMARCKS gene prevents cranial neural tube closure and results in anencephaly. Proc Natl Acad Sci USA 93:6275–6279

    PubMed  CAS  Google Scholar 

  162. Xu W, Baribault H, Adamson ED (1998) Vinculin knockout results in heart and brain defects during embryonic development. Development 125:327–337

    PubMed  CAS  Google Scholar 

  163. Koleske AJ, Gifford AM, Scott ML, Nee M, Bronson RT (1998) Essential roles for the Abl and Arg tyrosine kinases in neurulation. Neuron 21:1259–1272

    PubMed  CAS  Google Scholar 

  164. Lanier LM, Gates MA, Witke W, Menzies AS, Wehman AM (1999) Mena is required for neurulation and commissure formation. Neuron 22:313–325

    PubMed  CAS  Google Scholar 

  165. Stumpo DJ, Eddy RL, Haley LL, Sait S, Shows TB, Lai WS, Young WS, Speer MC, Dehejia A, Polymeropoulos M, Blackshear PJ (1998) Promoter sequence, expression, and fine chromosomal mapping of the human gene (MLP) encoding the MARCKS-like protein: identification of neighboring and linked polymorphic loci for MLP and MACS and use in the evaluation of human neural tube defects. Genomics 49:253–264

    PubMed  CAS  Google Scholar 

  166. Holmberg J, Clarke DL, Frisen J (2000) Regulation of repulsion versus adhesion by different splice forms of an Eph receptor. Nature 408:203–206

    PubMed  CAS  Google Scholar 

  167. Lee HS, Bong YS, Moore KB, Soria K, Moody SA, Daar IO (2005) Dishevelled mediates ephrinB1 signalling in the eye field through the planar cell polarity pathway. Nat Cell Biol 8:55–63

    PubMed  Google Scholar 

  168. Rutishauser U, Jessell TM (1988) Cell adhesion molecules in vertebrate neural development. Physiol Rev 68:819–885

    PubMed  CAS  Google Scholar 

  169. Detrick RJ, Dickey D, Kinter CR (1990) The effects of N-cadherin misexpression on morphogenesis in Xenopus embryos. Neuron 4:493–506

    PubMed  CAS  Google Scholar 

  170. Cremer H, Chazal G, Goridis C, Represa A (1997) NCAM is essential for axonal growth and fasciculation in the hippocampus. Mol Cell Neurosci 8:323–335

    PubMed  CAS  Google Scholar 

  171. Radice GL, Ferreira-Cornwell MC, Robinson SD, Rayburn H, Chodosh LA, Takeichi M, Hynes RO (1997) Precocious mammary gland development in P-cadherin-deficient mice. J Cell Biol 139:1025–1032

    PubMed  CAS  Google Scholar 

  172. Deak KL, Boyles AL, Etchevers HC, Melvin EC, Siegel DG, Graham FL, Slifer SH, Enterline DS, Geoand Speer MC (2005) SNPs in the neural cell adhesion molecule 1 gene (NCAM1) may be associated with human neural tube defects. Hum Genet 117:133–142

    PubMed  CAS  Google Scholar 

  173. Loeken MR (2005) Current perspectives on the causes of neural tube defects resulting from diabetic pregnancy. Am J Med Genet C Semin Med Genet 135C:77–87

    PubMed  Google Scholar 

  174. Shaw GM, Velie EM, Schaffer D (1996) Risk of neural tube defect-affected pregnancies among obese women. JAMA 275:1093–1096

    PubMed  CAS  Google Scholar 

  175. Lynberg MC, Khoury MJ, Lu X, Cocian T (1994) Maternal flu, fever and risk of neural tube defects: a population-based case-control study. Am J Epidemiol 140:244–255

    PubMed  CAS  Google Scholar 

  176. Matalon S, Schechtman S, Goldzweig G, Ornoy A (2002) The teratogenic effect of carbamazepine: a meta-analysis of 1255 exposures. Reprod Toxicol 5:33–39

    Google Scholar 

  177. Myrianthopoulos NC, Melnick M (1987) Studies in neural tube defects. I. Epidemiological and etiologic aspects. Am J Med Genet 26:783–796

    PubMed  CAS  Google Scholar 

  178. Ncayiyana DJ (1996) Neural tube defects among rural blacks in a Transkei district. A preliminary report and analysis. S Afr Med J 69:618–620

    Google Scholar 

  179. Bove F, Shim Y, Zeitz P (2002) Drinking water contaminants and adverse pregnancy outcome: a review. Environ Health Perspect 110:61–74

    PubMed  Google Scholar 

  180. Shaw GM (2001) Adverse human reproductive outcomes and electromagnetic fields: a brief summary of the epidemiologic literature. Bioelectromagnetics 5:S5–S18 (Suppl)

    PubMed  Google Scholar 

  181. Shaw GM, Wasserman CR, O’Malley CD, Nelson V, Jackson RJ (1999) Maternal pesticide exposure from multiple sources and selected congenital anomalies. Epidemiology 10:60–66

    PubMed  CAS  Google Scholar 

  182. Croen LA, Shaw GM, Sanbonmatsu L, Selvin S, Buffler PA (1997) Maternal residential proximity to hazardous waste sites and risk for selected congenital malformations. Epidemiology 8:347–354

    PubMed  CAS  Google Scholar 

  183. Suarez L, Cardarelli K, Hendricks K (2003) Maternal stress, social support, and risk of neural tube defects among Mexican Americans. Epidemiology 14:612–616

    PubMed  Google Scholar 

  184. Felkner M, Hendricks K, Suarez L, Waller DK (2003) Diarrhea: a new risk factor for neural tube defects? Birth Defects Res A Clin Mol Teratol 67:504–508

    PubMed  CAS  Google Scholar 

  185. MRC (1991) Prevention of neural tube defects: results of the Medical Research Council Vitamin Study. MRC Vitamin Study Research Group. Lancet 338:131–137

    Google Scholar 

  186. Czeizel AE, Dudas I (1992) Prevention of the first occurrence of neural-tube defects by periconceptional vitamin supplementation. N Engl J Med 327:1832–1835

    Article  PubMed  CAS  Google Scholar 

  187. Erickson JD (2002) Folic acid and prevention of spina bifida and anencephaly. 10 years after U.S. Public Health Service Recommendation. MMWR Recomm Rep 51:1–3

    PubMed  Google Scholar 

  188. Van der Put NM, Steegers-Theunissen RP, Frosst P, Trijbels FJ, Eskes TK, van den Heuvel LP, Mariman EC, den Heyer M, Rozen R, Blom HJ (1995) Mutated methylenetetrahydrofolate reductase as risk factor for spina bifida. Lancet 346:1070–1071

    PubMed  Google Scholar 

  189. Ou CY, Stevenson RE, Brown VK, Schwart CE, Allen WP, Khoury MJ, Rozen R, Oakley GP, Adams MJ (1996) Methylenetetrahydrofolate reductase genetic polymorphism as a risk factor for neural tube defects. Am J Med Genet 63:610–614

    PubMed  CAS  Google Scholar 

  190. Christensen B, Arbour L, Tran P, Leclerc D, Sabbaghian N, Platt R, Gilfix BM, Rosenblatt DS, Gravel RA, Forbes P, Rozen R (1999) Genetic polymorphisms in methylenetetrahydrofolate reductase and methionine synthase, folate levels in red blood cells, and risk of neural tube defects. Am J Med Genet 84:151–157

    PubMed  CAS  Google Scholar 

  191. Koch MC, Stegmann K, Ziegler A, Schroter B, Ermert A (1998) Evaluation of the MTHFR C677T allele and the MTHFR gene locus in a German spina bifida population. Eur J Pediatr 157:487–492

    PubMed  CAS  Google Scholar 

  192. Gonzales-Herrera L, Garcia-Escalante G, Castillo-Zapata I, Canto-Herrera J, Caballos-Quintal J, Pinto-Escalante D, Diaz-Rubio F, Del Angel RM, Orozco-Orozco L (2002) Frequency of the thermolabile variant C677T in the MTHFR gene and lack of association with neural tube defects in the State of Yucatan, Mexico. Clin Genet 62:394–398

    Google Scholar 

  193. Revilla JIG, Hernandez FN, Martin MTC, Salvador MT, Romero JG (2003) C677T and A1298C MTHFR polymorphisms in the etiology of neural tube defects in Spanish population. Med Clin (Barc) 120:441–445

    Google Scholar 

  194. Botto LD, Yang Q (2000) 5,10-Methylenetetrahydrofolate reductase gene variants and congenital anomalies: a HuGE review. Am J Epidemiol 151:862–877

    PubMed  CAS  Google Scholar 

  195. van der Put NM, Gabreels F, Stevens EM, Smeitink JA, Trijbels FJ, Eskes TK, van den Heuvel LP, Blom HJ (1998) A second common mutation in the methylenetetrahydrofolate reductase gene: an additional risk factor for neural-tube defects? Am J Hum Genet 62:1044–1051

    PubMed  Google Scholar 

  196. Weisberg I, Tran P, Christensen B, Sibani S, Rozen R (1998) A second genetic polymorphism in methylenetetrahydrofolate reductase (MTHFR) associated with decreased enzyme activity. Mol Genet Metab 64:169–172

    PubMed  CAS  Google Scholar 

  197. De Marco P, Calevo MG, Moroni A, Arata L, Merello E, Finnell RH, Zhu H, Andreussi L, Cama A, Capra V (2002) Study of MTHFR and MS polymorphisms as risk factors for NTD in the Italian population. J Hum Genet 47:319–324

    PubMed  Google Scholar 

  198. Brody LC, Conley M, Cox C, Kirke PN, McKeever MP, Mills JL, Molloy AM, O’Leary VB, Parle-McDermott A, Scott JM, Swanson DA (2002) A polymorphism, R653Q, in the trifunctional enzyme methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate cyclohydrolase/formyltetrahydrofolate synthetase is a maternal genetic risk factor for neural tube defects: report of the Birth Defects Research Group. Am J Hum Genet 71:1207–1215

    PubMed  CAS  Google Scholar 

  199. Parle-McDermott A, Kirke PN, Mills JL, Molloy AM, Cox C, O’Leary VB, Pangilinan F, Conley M, Cleary L, Brody LC et al (2006) Confirmation of the R653Q polymorphism of the trifunction C1-synthase enzyme as a maternal risk for neural tube defects in the Irish population. Eur J Hum Genet 14:768–772

    PubMed  CAS  Google Scholar 

  200. Rothenberg SP, da Costa MP, Sequeira JM, Cracco J, Roberts JL, Weedon J, Quadros EV (2004) Autoantibodies against folate receptors in women with a pregnancy complicated by a neural-tube defect. N Engl J Med 350:134–142

    PubMed  CAS  Google Scholar 

  201. Barber RC, Shaw GM, Lammer EJ, Greer KA, Biela TA, Lacey SW, Wasserman CR, Finnell RH (1998) Lack of association between mutations in the folate receptor-alpha gene and spina bifida. Am J Med Genet 76:310–317

    PubMed  CAS  Google Scholar 

  202. De Marco P, Calevo MG, Moroni A, Merello E, Raso A, Finnell RH, Zhu HP, Andreussi L, Cama A, Capra V (2003) Reduced folate carrier polymorphism (80A→G) and neural tube defects. Eur J Hum Genet 11:245–252

    PubMed  Google Scholar 

  203. O’leary VB, Pangilinan F, Cox C, Parle-McDermott A, Conley M, Molloy AM, Kirke PN, Mills JL, Brody LC, Scott JM, Members of the Birth Defects Research Group (2006) Reduced folate carrier polymorphisms and neural tube defect risk. Mol Genet Metab 87:364–369

    PubMed  CAS  Google Scholar 

  204. Shaw GM, Lammer EJ, Zhu HP, Baker MW, Neri E, Finnell RH (2002) Maternal periconceptional vitamin use, genetic variation of infant reduced folate carrier (A80G), and risk of spina bifida. Am J Med Genet 108:1–6

    PubMed  Google Scholar 

  205. Kirke PN, Molloy AM, Daly LE, Burke H, Weir DG, Scott JM (1993) Maternal plasma folate and vitamin B12 are independent risk factors for neural tube defects. Q J Med 86:703–708

    PubMed  CAS  Google Scholar 

  206. Afman LA, van der Put NM, Thomas CM, Trijbels JM, Blom HJ (2001) Reduced vitamin B12 binding by transcobalamin II increases the risk of neural tube defects. Q J Med 94:159–166

    CAS  Google Scholar 

  207. Morrison K, Papapetrou C, Hol FA, Mariman EC, Lynch SA, Burn J, Edwards YH (1998) Susceptibility to spina bifida; an association study of five candidate genes. Ann Hum Genet 62:379–396

    PubMed  CAS  Google Scholar 

  208. Wilson A, Platt R, Wu Q, Leclerc D, Christensen B, Yang H, Gravel RA, Rozen R (1999) A common variant in methionine synthase reductase combined with low cobalamin (vitamin B12) increases risk for spina bifida. Mol Genet Metab 67:317–323

    PubMed  CAS  Google Scholar 

  209. O’Leary VB, Mills JL, Pangilinan F, Kirke PN, Cox C, Conley M, Weiler A, Peng K, Shane B, Scott JM et al (2005) Analysis of methionine synthase reductase polymorphisms for neural tube defects risk association. Mol Genet Metab 85:220–227

    PubMed  CAS  Google Scholar 

  210. Afman LA, Lievers KJ, van der Put NM, Trijbels FJM, Blom HJ (2002) Single nucleotide polymorphisms in the transcobalamin gene: relationship with transcobalamin concentrations and risk for neural tube defects. Eur J Hum Genet 10:433–438

    PubMed  CAS  Google Scholar 

  211. Swanson DA, Pangilinan F, Mills JL, Kirke PN, Conley M, Weiler A, Frey T, Parle-McDermott A, O’Leary VB, Seltzer RR, Moynihan KA, Molloy AM, Burke H, Scott JM, Brody LC (2005) Evaluation of transcobalamin II polymorphisms as neural tube defect risk factors in an Irish population. Birth Defects Res A Clin Mol Teratol 73:239–244

    PubMed  CAS  Google Scholar 

  212. Heil SG, van der Put NMJ, Waas ET, den Heijer M, Trijbels FJM, Blom HJ (2001) Is mutated serine hydroxymethyltransferase (SHMT) involved in the etiology of neural tube defects? Mol Genet Metab 73:164–172

    PubMed  CAS  Google Scholar 

  213. Morin I, Platt R, Weisberg I, Sabbaghian N, Wu Q, Garrow TA, Rozen R (2003) Common variant in betaine–homocysteine methyltransferase (BHMT) and risk for spina bifida. Am J Med Genet 119A:172–176

    PubMed  Google Scholar 

  214. Wilding CS, Relton CL, Sutton MJ, Jonas PA, Lynch SA, Tawn EJ, Burn J (2004) Thymidylate synthase repeat polymorphisms and risk of neural tube defects in a population from the northern United Kingdom. Birth Defects Res A Clin Mol Teratol 70:483–485

    PubMed  CAS  Google Scholar 

  215. Volcik KA, Shaw GM, Zhu H, Lammer EJ, Laurent C, Finnell RH (2003) Associations between polymorphisms within the thymidylate synthase gene and spina bifida. Birth Defects Res A Clin Mol Teratol 67:924–928

    PubMed  CAS  Google Scholar 

  216. Volcick KA, Shaw GM, Lammer EJ, Zhu H, Finnell RH (2003) Evaluation of infant methylenetetrahydrofolate reductase genotype, maternal vitamin use, and risk of high versus low level spina bifida defects. Birth Defects Res Part A Clin Mol Teratol 67:154–157

    Google Scholar 

  217. Zhao Q, Behringer RR, de Crombrugghe B (1996) Prenatal folic acid treatment suppresses acrania and meroanencephaly in mice mutant for the Cart1 homeobox gene. Nat Genet 13:275–283

    PubMed  CAS  Google Scholar 

  218. Barbera JP, Rodriguez TA, Greene ND, Weninger WJ, Simeone A, Copp AJ, Beddington RS, Dunwoodie S (2002) Folic acid prevents exencephaly in Cited2 deficient mice. Hum Mol Genet 11:283–293

    PubMed  CAS  Google Scholar 

  219. Conway SJ, Henderson DJ, Copp AJ (1997) Pax3 is required for cardiac neural crest migration in the mouse: evidence from the splotch (Sp2H) mutant. Development 124:505–514

    PubMed  CAS  Google Scholar 

  220. Piedrahita JA, Oetama B, Bennett GD, van Waes J, Kamen BA, Richardson J, Lacey SW, Anderson RG, Finnell RH (1999) Mice lacking the folic acid-binding protein Folbp1 are defective in early embryonic development. Nat Genet 23:228–232

    PubMed  CAS  Google Scholar 

  221. Carter M, Ulrich S, Oofuji Y, Williams DA, Ross ME (1999) Crooked tail (Cd) models human folate-responsive neural tube defects. Hum Mol Genet 8:2199–2204

    PubMed  CAS  Google Scholar 

  222. Carter M, Chen X, Slowinska B, Minnerath S, Glickstein S, Shi C, Campagne F, Weinstein H, Ross ME (2005) Crooked tail (Cd) model of human folate-responsive neural tube defects is mutated in Wnt coreceptor lipoprotein receptor-related protein 6. Proc Natl Acad Sci USA 102:12843–12848

    PubMed  CAS  Google Scholar 

  223. Haviland MB, Essien FB (1990) Expression of the Axd (axial defects) mutation in the mouse is insensitive to retinoic acid at low dose. J Exp Zool 256:342–346

    PubMed  CAS  Google Scholar 

  224. Greene ND, Copp AJ (1997) Inositol prevents folate-resistant neural tube defects in the mouse. Nat Med 3:60–66

    PubMed  CAS  Google Scholar 

  225. Ting SB, Caddy J, Hislop N, Wilanowski T, Auden A, Zhao LL, Ellis S, Kaur P, Uchida Y, Holleran WM, Elias PM, Cunningham JM, Jane SM (2005) A homolog of Drosophila grainy head is essential for epidermal integrity in mice. Science 308:411–413

    PubMed  CAS  Google Scholar 

  226. Cogram P, Hynes A, Dunlevy LP, Greene ND, Copp AJ (2004) Specific isoforms of protein kinase C are essential for prevention of folate-resistant neural tube defects by inositol. Hum Mol Genet 13:7–14

    PubMed  CAS  Google Scholar 

  227. Groenen PM, Peer PG, Wevers RA, Swinkels DW, Franke B, Mariman EC, Steegers-Theunissen RP (2003) Maternal myo-inositol, glucose, and zinc status is associated with the risk of offspring with spina bifida. Am J Obstet Gynecol 189:1713–1719

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank A.J. Copp for his helpful discussion. P.D.M., E.M., and S.M. are supported by grants of Italian Ministry of Health. V.C. is supported by Gaslini Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valeria Capra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Marco, P., Merello, E., Mascelli, S. et al. Current perspectives on the genetic causes of neural tube defects. Neurogenetics 7, 201–221 (2006). https://doi.org/10.1007/s10048-006-0052-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10048-006-0052-2

Keywords

Navigation