Skip to main content

Advertisement

Log in

Apoptosis-related genes change their expression with age and hearing loss in the mouse cochlea

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

To understand possible causative roles of apoptosis gene regulation in age-related hearing loss (presbycusis), apoptotic gene expression patterns in the CBA mouse cochlea of four different age and hearing loss groups were compared, using GeneChip and real-time (qPCR) microarrays. GeneChip transcriptional expression patterns of 318 apoptosis-related genes were analyzed. Thirty eight probes (35 genes) showed significant differences in expression. The significant gene families include Caspases, B-cell leukemia/lymphoma2 family, P53, Calpains, Mitogen activated protein kinase family, Jun oncogene, Nuclear factor of kappa light chain gene enhancer in B-cells inhibitor-related and tumor necrosis factor-related genes. The GeneChip results of 31 genes were validated using the new TaqMan® Low Density Array (TLDA). Eight genes showed highly correlated results with the GeneChip data. These genes are: activating transcription factor3, B-cell leukemia/lymphoma2, Bcl2-like1, caspase4 apoptosis-related cysteine protease 4, Calpain2, dual specificity phosphatase9, tumor necrosis factor receptor superfamily member12a, and Tumor necrosis factor superfamily member13b, suggesting they may play critical roles in inner ear aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Melino G, Knight RA, Nicotera P (2005) How many ways to die? How many different models of cell death? Cell Death Differ 12:1457–1462. doi:10.1038/sj.cdd.4401781

    Article  PubMed  CAS  Google Scholar 

  2. Stoka V, Turk V, Turk B (2007) Lysosomal cysteine cathepsins: signaling pathways in apoptosis. Biol Chem 388:555–560. doi:10.1515/BC.2007.064

    Article  PubMed  CAS  Google Scholar 

  3. Yasuhara S, Asai A, Sahani N, Martyn JAJ (2007) Mitochondria, endoplasmic reticulum, and alternative pathways of cell death in critical illness. Crit Care Med 35(9):488–495. doi:10.1097/01.CCM.0000278045.91575.30

    Article  Google Scholar 

  4. Fischer U, Schulze-Osthoff K (2005) Apoptosis-based therapies and drug targets. Cell Death Differ 12:942–961. doi:10.1038/sj.cdd.4401556

    Article  PubMed  CAS  Google Scholar 

  5. Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35(4):495–516. doi:10.1080/01926230701320337

    Article  PubMed  CAS  Google Scholar 

  6. Clarke PG (1990) Developmental cell death: morphological diversity and multiple mechanisms. Anat Embryol (Berl) 181:195–213. doi:10.1007/BF00174615

    CAS  Google Scholar 

  7. Ihara T, Yamamoto T, Sugamata M, Okumura H, Ueno Y (1998) The process of ultrastructural changes from nuclei to apoptotic body. Virchows Arch 433:443–447. doi:10.1007/s004280050272

    Article  PubMed  CAS  Google Scholar 

  8. LeDoux SP, Druzhyna NM, Hollensworth SB, Harrison JF, Wilson GL (2007) Mitochondrial and repair: a critical player in the response of cells of the CNS to genotoxic insults. Neuroscience 145:1249–1259. doi:10.1016/j.neuroscience.2006.10.002

    Article  PubMed  CAS  Google Scholar 

  9. Vaux DL, Korsmeyer SJ (1999) Cell death in development. Cell 96:245–254. doi:10.1016/S0092-8674(00)80564-4

    Article  PubMed  CAS  Google Scholar 

  10. Mathiasen IS, Sergeev IN, Bastholm L, Elling F, Norman AW, Jaattela M (2002) Calcium and calpain as key mediators of apoptosis-like death induced by vitamin D compounds in breast cancer cells. J Biol Chem 277:30738–30745. doi:10.1074/jbc.M201558200

    Article  PubMed  CAS  Google Scholar 

  11. Haeberlein SLB (2004) Mitochondrial function in apoptotic neuronal cell death. Neurochem Res 29(3):521–530. doi:10.1023/B:NERE.0000014823.74782.b7

    Article  PubMed  CAS  Google Scholar 

  12. Leyton L, Quest AF (2004) Supramolecular complex formation in cell signaling and disease; an update on a recurrent theme in cell life and death. Biol Res 37:29–43

    PubMed  CAS  Google Scholar 

  13. Liu X, Van Vleet T, Schnellmann RG (2004) The role of calpain in oncotic cell death. Annu Rev Pharmacol Toxicol 44:349–370. doi:10.1146/annurev.pharmtox.44.101802.121804

    Article  PubMed  CAS  Google Scholar 

  14. Hetz CA, Hunn M, Rojas P, Torres V, Leyton L, Quest AF (2002) Caspase-dependent initiation of apoptosis and necrosis by the Fas receptor in lymphoid cells: onset of necrosis is associated with delayed ceramide increase. J Cell Sci 115:4671–4683. doi:10.1242/jcs.00153

    Article  PubMed  CAS  Google Scholar 

  15. Hetz CA, Torres V, Quest AF (2005) Beyond apoptosis: nonapoptotic cell death in physiology and disease. Biochem Cell Biol 83(5):579–588. doi:10.1139/o05-065

    Article  PubMed  CAS  Google Scholar 

  16. Demarchi F, Bertoli C, Copetti T, Tanida I, Brancolini C, Eskelinen EL et al (2006) Calpain is required for macroautophagy in mammalian cells. J Cell Biol 175:595–605. doi:10.1083/jcb.200601024

    Article  PubMed  CAS  Google Scholar 

  17. Skulachev VP (1996) Why are mitochondria involved in apoptosis? Permeability transition pores and apoptosis as selective mechanisms to eliminate superoxide-producing mitochondria and cells. FEBS Lett 397:7–10. doi:10.1016/0014-5793(96)00989-1

    Article  PubMed  CAS  Google Scholar 

  18. Ferri KF, Kroemer G (2001) Mitochondria—the suicide organelles. Bioessays 23:111–115. doi:10.1002/1521-1878(200102)23:2<111::AID-BIES1016>3.0.CO;2-Y

    Article  PubMed  CAS  Google Scholar 

  19. Josa A, Susin SA, Daugas E, Stanford WL, Cho SK, Li CYJ et al (2001) Essential role of the mitochondrial apoptosis-inducing factor in programmed cell death. Nature 410:549–554. doi:10.1038/35069004

    Article  CAS  Google Scholar 

  20. Guicciardi ME, Deussing J, Miyoshi H, Bronk SF, Svingen PA, Peters C et al (2000) Cathepsin B contributes to TNF-α mediated hepatocyte apoptosis by promoting mitochondrial release of cytochrome c. J Clin Invest 106:1127–1137. doi:10.1172/JCI9914

    Article  PubMed  CAS  Google Scholar 

  21. Stoka V, Turk B, Schendel SL, Kim TH, Cirman T, Snipas SJ et al (2001) Lysosomal protease pathways to apoptosis. Cleavage of bid, not pro-caspases, is the most likely route. J Biol Chem 276:3149–3157. doi:10.1074/jbc.M008944200

    Article  PubMed  CAS  Google Scholar 

  22. Hail N Jr, Carter BZ, Konopleva M, Andreeff M (2006) Apoptosis effector mechanisms: a requiem performed in different keys. Apoptosis 11:889–904. doi:10.1007/s10495-006-6712-8

    Article  PubMed  Google Scholar 

  23. Falschlehner C, Emmerich CH, Gerlach B, Walczak H (2007) TRAIL signaling: decisions between life and death. Int J Biochem Cell Biol 39:1462–1475. doi:10.1016/j.biocel.2007.02.007

    Article  PubMed  CAS  Google Scholar 

  24. Tadros SF, D’Souza M, Zettel ML, Zhu X, Frisina RD (2007) Glutamate-related gene expression changes with age in the mouse auditory midbrain. Brain Res 1127:1–9. doi:10.1016/j.brainres.2006.09.081

    Article  PubMed  CAS  Google Scholar 

  25. Jacobson M, Kim S, Romney J, Zhu X, Frisina RD (2003) Contralateral suppression of distortion-product otoacoustic emissions declines with age: a comparison of findings in CBA mice with human listeners. Laryngoscope 113(10):1707–1713. doi:10.1097/00005537-200310000-00009

    Article  PubMed  Google Scholar 

  26. Guimaraes P, Zhu X, Cannon T, Kim S, Frisina RD (2004) Sex differences in distortion product otoacoustic emissions as a function of age in CBA mice. Hear Res 192(1–2):83–89. doi:10.1016/j.heares.2004.01.013

    Article  PubMed  Google Scholar 

  27. Varghese GI, Zhu X, Frisina RD (2005) Age-related declines in distortion product otoacoustic emissions utilizing pure tone contralateral stimulation in CBA/CaJ mice. Hear Res 209:60–67. doi:10.1016/j.heares.2005.06.006

    Article  PubMed  Google Scholar 

  28. Giulietti A, Overbergh L, Valckx D, Decallonne B, Bouillon R, Mathieu C (2001) An overview of real-time quantitative PCR: applications to quantify cytokine gene expression. Methods 4:386–401. doi:10.1006/meth.2001.1261

    Article  CAS  Google Scholar 

  29. Baik SY, Jung KH, Choi MR, Yang BH, Kim SH, Lee JS et al (2005) Fluoxetine-induced up-regulation of 14-3-3zeta and tryptophan hydroxylase levels in RBL-2H3 cells. Neurosci Lett 374:53–57. doi:10.1016/j.neulet.2004.10.047

    Article  PubMed  CAS  Google Scholar 

  30. Van De Water TR, Lallemend F, Eshraghi AA, Ahsan S, He J, Guzman J et al (2004) Caspases, the enemy within, and their role in oxidative stress-induced apoptosis of inner ear sensory cells. Otol Neurotol 25:627–632. doi:10.1097/00129492-200407000-00035

    Article  Google Scholar 

  31. Cheng AG, Cunningham LL, Ruble EW (2005) Mechanisms of hair cell death and protection. Curr Opin Otolaryngol Head Neck Surg 13:343–348. doi:10.1097/01.moo.0000186799.45377.63

    Article  PubMed  Google Scholar 

  32. Ylikoski J, Xing-Qun L, Virkkala J, Pirvola U (2002) Blockade of c-Jun N-terminal kinase pathway attenuates gentamicin-induced cochlear and vestibular hair cell death. Hear Res 163:71–81. doi:10.1016/S0378-5955(01)00380-X

    Article  PubMed  CAS  Google Scholar 

  33. Wang J, Van De Water TR, Bonny C, De Ribaupierre F, Puel JL, Zine A (2003) A peptide inhibitor of c-Jun N-terminal kinase protects against both aminoglycoside and acoustic trauma-induced auditory hair cell death and hearing loss. J Neurosci 23:8596–8607

    PubMed  CAS  Google Scholar 

  34. Scarpidis U, Madnani D, Shoemaker C, Fletcher CH, Kojima K, Eshraghi AA et al (2003) Arrest of apoptosis in auditory neurons: implications for sensorineural preservation in cochlear implantation. Otol Neurotol 24:409–417. doi:10.1097/00129492-200305000-00011

    Article  PubMed  Google Scholar 

  35. Matsui JI, Gale JE, Warchol ME (2004) Critical signaling events during the aminoglycoside-induced death of sensory hair cells in vitro. J Neurobiol 61(2):250–266. doi:10.1002/neu.20054

    Article  PubMed  CAS  Google Scholar 

  36. Zine A, Van De Water TR (2004) The MAPK/JNK signalling pathway offers potential therapeutic targets for the prevention of acquired deafness. Curr Drug Target CNS Neurol Disord 3(4):325–332. doi:10.2174/1568007043337166

    Article  CAS  Google Scholar 

  37. Sugahara K, Rubel EW, Cunningham LL (2006) JNK signaling in neomycin-induced vestibular hair cell death. Hear Res 221:128–135. doi:10.1016/j.heares.2006.08.009

    Article  PubMed  CAS  Google Scholar 

  38. Zhang M, Liu W, Ding D, Salvi R (2003) Pifithrin-α suppresses p53 and protects cochlear and vestibular hair cells from cisplatin-induced apoptosis. Neuroscience 120:191–205. doi:10.1016/S0306-4522(03)00286-0

    Article  PubMed  CAS  Google Scholar 

  39. Alam SA, Oshima T, Suzuki M, Kawase T, Takasaka T, Ikeda K (2001) The expression of apoptosis-related proteins in the aged cochlea of Mongolian gerbils. Laryngoscope 111:528–534. doi:10.1097/00005537-200103000-00026

    Article  PubMed  CAS  Google Scholar 

  40. Kitahara T, Li-Korotky HS, Balaban CD (2005) Regulation of mitochondrial uncoupling proteins in mouse inner ear ganglion cells in response to systemic kanamycin challenge. Neuroscience 135:639–653. doi:10.1016/j.neuroscience.2005.06.056

    Article  PubMed  CAS  Google Scholar 

  41. Lang H, Schulte BA, Zhou D, Smythe N, Spicer SS, Schmiedt RA (2006) Nuclear factor kappaB deficiency is associated with auditory nerve degeneration and increased noise-induced hearing loss. J Neurosci 26(13):3541–3550. doi:10.1523/JNEUROSCI.2488-05.2006

    Article  PubMed  CAS  Google Scholar 

  42. Bodmer JL, Schneider P, Tschopp J (2002) The molecular architecture of the TNF superfamily. Trends Biochem Sci 27(1):19–26. doi:10.1016/S0968-0004(01)01995-8

    Article  PubMed  CAS  Google Scholar 

  43. Gaur U, Aggarwal BB (2003) Regulation of proliferation, survival and apoptosis by members of the TNF superfamily. Biochem Pharmacol 66:1403–1408. doi:10.1016/S0006-2952(03)00490-8

    Article  PubMed  CAS  Google Scholar 

  44. Aggarwal BB (2003) Signaling pathways of the TNF superfamily: a double-edged sword. Nat Rev Immunol 3(9):745–756. doi:10.1038/nri1184

    Article  PubMed  CAS  Google Scholar 

  45. Ch’en PFT, Xu XG, Liu XS, Liu Y, Song CJ, Screaton GR et al (2005) Characterization of monoclonal antibodies to the TNF and TNF receptor families. Cell Immunol 236:78–85. doi:10.1016/j.cellimm.2005.08.010

    Article  PubMed  CAS  Google Scholar 

  46. Schneider P, MacKay F, Steiner V, Hofmann K, Bodmer J, Holler N et al (1999) BAFF, a novel ligand of the tumor necrosis factor family, stimulates B cell growth. J Exp Med 189:1747–1756. doi:10.1084/jem.189.11.1747

    Article  PubMed  CAS  Google Scholar 

  47. Wilson CA, Browning JL (2002) Death of HT29 adenocarcinoma cells induced by TNF family receptor activation is caspase-independent and displays features of both apoptosis and necrosis. Cell Death Differ 9:1321–1333. doi:10.1038/sj.cdd.4401107

    Article  PubMed  CAS  Google Scholar 

  48. Nakayama M, Ishidoh K, Kayagaki N, Kojima Y, Yamaguchi N, Nakano H et al (2002) Multiple pathways of TWEAK-induced cell death. J Immunol 168:734–743

    PubMed  CAS  Google Scholar 

  49. Nakayama M, Ishidoh K, Kojima Y, Harada N, Kominami E, Okumura K et al (2003) Fibroblast growth factor-inducible 14 mediates multiple pathways of TWEAK-induced cell death. J Immunol 170:341–348

    PubMed  CAS  Google Scholar 

  50. Potrovita I, Zhang W, Burkly L, Hahm K, Lincecum J, Wang MZ et al (2004) Tumor necrosis factor-like weak inducer of apoptosis-induced neurodegeneration. J Neurosci 24(38):8237–8244. doi:10.1523/JNEUROSCI.1089-04.2004

    Article  PubMed  CAS  Google Scholar 

  51. Baxter FO, Came PJ, Abell K, Kedjouar B, Huth M, Rajewsky K et al (2006) IKKβ/2 induces TWEAK and apoptosis in mammary epithelial cells. Development 133:3485–3494. doi:10.1242/dev.02502

    Article  PubMed  CAS  Google Scholar 

  52. Winkles JA, Tran NL, Brown SAN, Stains N, Cunliffe HE, Berens ME (2007) Role of TWEAK and Fn14 in tumor biology. Front Biosci 12:2761–2771. doi:10.2741/2270

    Article  PubMed  CAS  Google Scholar 

  53. Feng SL, Guo Y, Factor VM, Thorgeirsson SS, Bell DW, Testa JR et al (2000) The Fn14 immediate-early response gene is induced during liver regeneration and highly expressed in both human and murine hepatocellular carcinomas. Am J Pathol 156:1253–1261

    PubMed  CAS  Google Scholar 

  54. Meighan-Mantha RL, Hsu DK, Guo Y, Brown SAN, Feng SLY, Peifley KA et al (1999) The mitogen-inducible Fn14 gene encodes a type I transmembrane protein that modulates fibroblast adhesion and migration. J Biol Chem 274:33166–33176. doi:10.1074/jbc.274.46.33166

    Article  PubMed  CAS  Google Scholar 

  55. Wiley SR, Winkles JA (2003) TWEAK, a member of the TNF superfamily, is a multifunctional cytokine that binds the TweakR/Fn14 receptor. Cytokine Growth Factor Rev 14(3–4):241–249. doi:10.1016/S1359-6101(03)00019-4

    Article  PubMed  CAS  Google Scholar 

  56. Kim SH, Lee WH, Kwon BS, Oh GT, Choi YH, Park JE (2001) Tumor necrosis factor receptor superfamily 12 may destabilize atherosclerotic plaques by inducing matrix metalloproteinases. Jpn Circ J 65:136–138. doi:10.1253/jcj.65.136

    Article  PubMed  CAS  Google Scholar 

  57. Han S, Yoon K, Lee K, Kim K, Jang H, Lee NK et al (2003) TNF-related weak inducer of apoptosis receptor, a TNF receptor superfamily member, activates NF-κB through TNF receptor-associated factors. Biochem Biophys Res Commun 305:789–796. doi:10.1016/S0006-291X(03)00852-0

    Article  PubMed  CAS  Google Scholar 

  58. Saitoh T, Nakayama M, Nakano H, Yagita H, Yamamoto N, Yamaoka S (2003) TWEAK induces NF-κB2 p100 processing and long lasting NF-κB activation. J Biol Chem 278(38):36005–36012. doi:10.1074/jbc.M304266200

    Article  PubMed  CAS  Google Scholar 

  59. He L, Grammer AC, Wu X, Lipsky PE (2004) TRAF3 forms heterotrimers with TRAF2 and modulates its ability to mediate NF-κB activation. J Biol Chem 279(53):55855–55865. doi:10.1074/jbc.M407284200

    Article  PubMed  CAS  Google Scholar 

  60. Pachiappan A, Thwin MM, Manikandan J, Gopalakrishnakone P (2005) Glial inflammation and neurodegeneration induced by candoxin, a novel neurotoxin from Bungarus candidus venom: global gene expression analysis using microarray. Toxicon 46:883–899. doi:10.1016/j.toxicon.2005.08.017

    Article  PubMed  CAS  Google Scholar 

  61. Moore PA, Belvedere O, Orr A, Pieri K, LaFleur DW, Feng P et al (1999) BLyS: member of the tumor necrosis factor family and B lymphocyte stimulator. Science 285:260–263. doi:10.1126/science.285.5425.260

    Article  PubMed  CAS  Google Scholar 

  62. Schneider P, Schwenzer R, Haas E, Muhlenbeck F, Schubert G, Scheurich P et al (1999) TWEAK can induce cell death via endogenous TNF and TNF receptor 1. Eur J Immunol 29:1785–1792. doi:10.1002/(SICI)1521-4141(199906)29:06<1785::AID-IMMU1785>3.0.CO;2-U

    Article  PubMed  CAS  Google Scholar 

  63. Nardelli B, Belvedere O, Roschke V, Moore PA, Olsen HS, Migone TS et al (2001) Synthesis and release of B-lymphocyte stimulator from myeloid cells. Blood 97:198–204. doi:10.1182/blood.V97.1.198

    Article  PubMed  CAS  Google Scholar 

  64. Kawasaki A, Tsuchiya N, Fukazawa T, Hashimoto H, Tokunaga K (2002) Analysis on the association of human BLYS (BAFF, TNFSF13B) polymorphisms with systemic lupus erythematosus and rheumatoid arthritis. Genes Immun 3:424–429. doi:10.1038/sj.gene.6363923

    Article  PubMed  CAS  Google Scholar 

  65. Kern C, Cornuel JF, Billard C, Tang R, Rouillard D, Stenou V et al (2004) Involvement of BAFF and APRIL in the resistance to apoptosis of B-CLL through an autocrine pathway. Blood 103:679–688. doi:10.1182/blood-2003-02-0540

    Article  PubMed  CAS  Google Scholar 

  66. Ramanujam M, Davidson A (2004) The current status of targeting BAFF/BLyS for autoimmune diseases. Arthritis Res Ther 6:197–202. doi:10.1186/ar1222

    Article  PubMed  CAS  Google Scholar 

  67. Gross JA, Johnston J, Murdi S, Enselman R, Dillon SR, Madden K et al (2000) TACI and BCMA are receptors for a TNF homologue implicated in B-cell autoimmune disease. Nature 404:995–999. doi:10.1038/35010115

    Article  PubMed  CAS  Google Scholar 

  68. Croker JA, Kimberly RP (2005) SLE: challenges and candidates in human disease. Trends Immunol 26(11):580–586. doi:10.1016/j.it.2005.09.001

    Article  PubMed  CAS  Google Scholar 

  69. Davis RJ (2000) Signal transduction by the JNK group of MAP kinases. Cell 103:239–252. doi:10.1016/S0092-8674(00)00116-1

    Article  PubMed  CAS  Google Scholar 

  70. Chang L, Karin M (2001) Mammalian MAP kinase signaling cascades. Nature 410:37–40

    Article  PubMed  CAS  Google Scholar 

  71. Pearson G, Robinson F, Beers Gibson T, Xu BE, Karandikar M, Berman K et al (2001) Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 22:153–183

    Article  PubMed  CAS  Google Scholar 

  72. Johnson GL, Lapadat R (2002) Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298:1911–1912

    Article  PubMed  CAS  Google Scholar 

  73. Theodosiou A, Ashworth A (2002) MAP kinase phospatases. Genome Biol 3(7):1–10

    Article  Google Scholar 

  74. Wada T, Penninger JM (2004) Mitogen-activated protein kinases in apoptosis regulation. Oncogene 23:2838–2849

    Article  PubMed  CAS  Google Scholar 

  75. Dickinson RJ, Keyse SM (2006) Diverse physiological functions for dual-specificity MAP kinase phosphatases. J Cell Sci 119(22):4607–4615

    Article  PubMed  CAS  Google Scholar 

  76. Marshall CJ (1995) Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80:179–185

    Article  PubMed  CAS  Google Scholar 

  77. Sabbagh W Jr, Flatauer LJ, Bardwell AJ, Bardwell L (2001) Specificity of MAP kinase signaling in yeast differentiation involves transient versus sustained MAPK activation. Mol Cell 8:683–691

    Article  PubMed  CAS  Google Scholar 

  78. Ebisuya M, Kondoh K, Nishida E (2005) The duration, magnitude and compartmentalization of ERK MAP kinase activity: mechanisms for providing signaling specificity. J Cell Sci 118:2997–3002

    Article  PubMed  CAS  Google Scholar 

  79. Owens DM, Keyse SM (2007) Differential regulation of MAP kinase signaling by dual-specificity protein phosphatases. Oncogene 26:3203–3213

    Article  PubMed  CAS  Google Scholar 

  80. Groom L, Sneddon AA, Alessi DR, Dowd S, Keyse SM (1996) Differential regulation of the MAP, SAP and RK/p38 kinases by Pyst1, a novel cytosolic dual-specificity phosphatase. EMBO J 15:3621–3632

    PubMed  CAS  Google Scholar 

  81. Camps M, Nichols A, Gillieron C, Antonsson B, Muda M, Chabert C et al (1998) Catalytic activation of the phosphatase MKP-3 by ERK2 mitogen-activated protein kinase. Science 280:1262–1265

    Article  PubMed  CAS  Google Scholar 

  82. Dowd S, Sneddon AA, Keyse SM (1998) Isolation of the human genes encoding the Pyst1 and Pyst2 phosphatases: characterisation of Pyst2 as a cytosolic dual-specificity MAP kinase phosphatase and its catalytic activation by both MAP and SAP kinases. J Cell Sci 111:3389–3399

    PubMed  CAS  Google Scholar 

  83. Dickinson RJ, Williams DJ, Slack DN, Williamson J, Seternes OM, Keyse SM (2002) Characterization of a murine gene encoding a developmentally regulated cytoplasmic dual-specificity mitogen-activated protein kinase phosphatase. Biochem J 364:145–155

    PubMed  CAS  Google Scholar 

  84. Christie GR, Williams DJ, MacIsaac F, Dickinson RJ, Rosewell I, Keyse SM (2005) The dual-specificity protein phosphatase DUSP9/MKP-4 is essential for placental function but it is not required for normal embryonic development. Mol Cell Biol 25(18):8323–8333

    Article  PubMed  CAS  Google Scholar 

  85. Teng CH, Huang WN, Meng TC (2007) Several dual specificity phosphatases coordinate to control the magnitude and duration of JNK activation in signaling response to oxidative stress. J Biol Chem 282(39):28395–28407

    Article  PubMed  CAS  Google Scholar 

  86. Liang G, Wolfgang CD, Chen BPC, Chen TH, Hai T (1996) ATF3 gene, genomic organization, promoter, and regulation. J Biol Chem 271(3):1695–1701

    Article  PubMed  CAS  Google Scholar 

  87. McCully KS (1996) Homocysteine and vascular disease. Nat Med 2:386–389

    Article  PubMed  CAS  Google Scholar 

  88. Hai T, Wolfgang CD, Marsee DK, Allen AE, Sivaprasad U (1999) ATF3 and stress responses. Gene Expr 7(4–6):321–335

    PubMed  CAS  Google Scholar 

  89. Cai Y, Zhang C, Nawa T, Aso T, Tanaka M, Oshiro S et al (2000) Homocysteine-responsive ATF3 gene expression in human vascular endothelial cells: activation of c-Jun NH2-terminal kinase and promoter response element. Blood 96:2140–2148

    PubMed  CAS  Google Scholar 

  90. Kawauchi J, Zhang C, Nobori K, Hashimoto Y, Adachi MT, Noda A et al (2002) Transcriptional repressor activating transcription factor 3 protects human umbilical vein endothelial cells from tumor necrosis factor-α-induced apoptosis through down-regulation of p53 transcription. J Biol Chem 277:39025–39034

    Article  PubMed  CAS  Google Scholar 

  91. Nawa T, Nawa MT, Adachi MT, Uchimura I, Schimokawa R, Fujisawa K et al (2002) Expression of transcriptional repressor ATF3/LRF1 in human atherosclerosis: colocalization and possible involvement in the cell death of vascular endothelial cells. Atherosclerosis 161:281–291

    Article  PubMed  CAS  Google Scholar 

  92. Inoue K, Zama T, Kamimoto T, Aoki R, Ikeda Y, Kimura H et al (2004) TNFα-induced ATF3 expression is bidirectionally regulated by the JNK and ERK pathways in vascular endothelial cells. Genes Cells 9:59–70

    Article  PubMed  CAS  Google Scholar 

  93. Mahadevan LC, Edwards DR (1991) Signaling and superinduction. Nature 349:747–748

    Article  PubMed  CAS  Google Scholar 

  94. Kyriakis JM, Banerjee P, Nikolakaki E, Dai T, Rubie EA, Ahmed MF et al (1994) The stress-activated protein kinase subfamily of c-Jun kinases. Nature 369:156–160

    Article  PubMed  CAS  Google Scholar 

  95. Wolfgang CD, Liang G, Okamoto Y, Allen AE, Hai T (2000) Transcriptional autorepression of the stress-inducible gene ATF3. J Biol Chem 275(22):16865–16870

    Article  PubMed  CAS  Google Scholar 

  96. Cressman DE, Greenbaum LE, deAngelis RA, Cilibarto G, Furth EE, Poli V et al (1996) Liver failure and defective hepatocyte regeneration in interleukin-6-deficient mice. Science 274:1379–1383

    Article  PubMed  CAS  Google Scholar 

  97. Zhang C, Gao C, Kawauchi J, Hashimoto Y, Tsuchida N, Kitajima S (2002) Transcriptional activation of the human stress-inducible transcriptional repressor ATF3 gene promoter by p53. Biochem Biophys Res Comm 297:1302–1310

    Article  PubMed  CAS  Google Scholar 

  98. Hai T, Liu F, Coukos WJ, Green MR (1989) Transcription factor ATF cDNA clones: an extensive family of leucine zipper proteins able to selectively form DNA-binding heterodimers. Genes Dev 3:2083–2090

    Article  PubMed  CAS  Google Scholar 

  99. Hai T, Curran T (1991) Cross-family dimerization of transcription factors Fos/Jun and ATF/CREB alters DNA binding specificity. Proc Natl Acad Sci USA 88:3720–3724

    Article  PubMed  CAS  Google Scholar 

  100. Hsu JC, Bravo R, Taub R (1992) Interactions among LRF-1, JunB, c-Jun and c-Fos define a regulatory program in the G1 phase of liver regeneration. Mol Cell Biol 12:4654–4665

    PubMed  CAS  Google Scholar 

  101. Chu HM, Tan Y, Kobierski LA, Balsam LB, Comb MJ (1994) Activating transcription factor-3 stimulates 3′, 5′-cyclic adenosine monophosphate-dependent gene expression. Mol Endocrinol 8:59–68

    Article  PubMed  CAS  Google Scholar 

  102. Fawcett TW, Martindale JL, Guyton KZ, Hai T, Holbrook NJ (1999) Complexes containing activating transcription factor (ATF)/cAMP-responsive-element-binding protein (CREB) interact with the CCAAT-enhancer-binding protein (C/EBP)-ATF composite site to regulate Gadd153 expression during the stress response. Biochem J 339:135–141

    Article  PubMed  CAS  Google Scholar 

  103. Chen BPC, Wolfgang CD, Hai T (1996) Analysis of ATF3, a transcription factor induced by physiological stresses and modulated by gadd153/Chop10. Mol Cell Biol 16(3):1157–1168

    PubMed  Google Scholar 

  104. Wolfgang CD, Chen BPC, Martindale JL, Holbrook NJ, Hai T (1997) Gadd153/Chop10, a potential target gene of the transcriptional repressor ATF3. Mol Cell Biol 17:6700–6707

    PubMed  CAS  Google Scholar 

  105. Mashima T, Udagawa S, Tsuruo T (2001) Involvement of transcriptional repressor ATF3 in acceleration of caspase protease activation during DNA damaging agent-induced apoptosis. J Cell Physiol 188:352–358

    Article  PubMed  CAS  Google Scholar 

  106. Nakagomi S, Suzuki Y, Namikawa K, Kiryu-Seo S, Kiyama H (2003) Expression of the activating transcription factor 3 prevents c-Jun N-terminal kinase-induced neuronal death by promoting heat shock protein 27 expression and Akt activation. J Neurosci 23(12):5187–5196

    PubMed  CAS  Google Scholar 

  107. Pearson AG, Gary CW, Pearson JF, Greenwood JM, During MJ, Dragunow M (2003) ATF3 enhances c-Jun-mediated neurite sprouting. Mol Brain Res 120:38–45

    Article  PubMed  CAS  Google Scholar 

  108. Vulg AS, Teuling E, Haasdijk ED, French P, Hoogenraad CC, Jaarsma D (2005) ATF3 expression precedes death of spinal motoneurons in amyotrophic lateral sclerosis-SOD1 transgenic mice and correlates with c-Jun phosphorylation, CHOP expression, somato-dendritic ubiquitination and Golgi fragmentation. Eur J Neurosci 22:1881–1894

    Article  Google Scholar 

  109. Seijffers R, Allchorne AJ, Woolf CJ (2006) The transcription factor ATF-3 promotes neurite outgrowth. Mol Cell Neurosci 32:143–154

    Article  PubMed  CAS  Google Scholar 

  110. Tsujino H, Kondo E, Fukuoka T, Dai Y, Tokunaga A, Miki K et al (2000) Activating transcription factor 3 (ATF3) induction by axotomy in sensory and motoneurons: a novel neuronal marker of nerve injury. Mol Cell Neurosci 15:170–182

    Article  PubMed  CAS  Google Scholar 

  111. McDonnell TJ, Beham A, Sarkiss M, Andersen MM, Lo P (1996) Importance of the Bcl-2 family in cell death regulation. Cell Mol Life Sci 52(10–11):1008–1017

    Article  CAS  Google Scholar 

  112. Tang L, Tron VA, Reed JC, Mah KJ, Krajewska M, Li G et al (1998) Expression of apoptosis regulators in cutaneous malignant melanoma. Clin Cancer Res 4:1865–1871

    PubMed  CAS  Google Scholar 

  113. Pena JC, Thompson CB, Recant W, Vokes EE, Rudin CM (1999) Bcl-xL and Bcl-2 expression in squamous cell carcinoma of the head and neck. Cancer 85(1):164–170

    Article  PubMed  CAS  Google Scholar 

  114. Nagy ZS, Esiri MM (1997) Apoptosis-related protein expression in the hippocampus in Alzheimer’s disease. Neurobiol Aging 18(6):565–571

    Article  PubMed  CAS  Google Scholar 

  115. Kuan CY, Roth KA, Flavell RA, Rakic P (2000) Mechanisms of programmed cell death in the developing brain. Trends Neurosci 23:291–297

    Article  PubMed  CAS  Google Scholar 

  116. Hopkins-Donaldson S, Cathomas R, Simoes-Wust AP, Kurtz S, Belyanskya L, Stahel RA et al (2003) Induction of apoptosis and chemosensitization of mesothelioma cells by Bcl-2 and Bcl-xL antisense treatment. Int J Cancer 106:160–166

    Article  PubMed  CAS  Google Scholar 

  117. Rodemann HP, Blaese MA (2007) Responses of normal cells to ionizing radiation. Semin Radiat Oncol 17:81–88

    Article  PubMed  Google Scholar 

  118. Levin LA, Schlamp CL, Spieldoch RL, Geszvain KM, Nickells RW (1997) Identification of the bcl-2 family of genes in the rat retina. Invest Ophthalmol Vis Sci 38(12):2545–2553

    PubMed  CAS  Google Scholar 

  119. Drache B, Diehl GE, Beyreuther K, Perlmutter LS, Konig G (1997) Bcl-xl-specific antibody labels activated microglia associated with Alzheimer’s disease and other pathological states. J Neurosci Res 47:98–108

    Article  PubMed  CAS  Google Scholar 

  120. Cunningham LL, Matsui JI, Warchol ME, Rubel EW (2004) Overexpression of Bcl-2 prevents neomycin-induced hair cell death and caspase-9 activation in the adult mouse utricle in vitro. J Neurobiol 60:89–100

    Article  PubMed  CAS  Google Scholar 

  121. Martinon F, Tschopp J (2004) Inflammatory caspases: linking an intracellular innate immune system to autoinflammatory diseases. Cell 117:561–574

    Article  PubMed  CAS  Google Scholar 

  122. Monack DM, Navarre WW, Falkow S (2001) Salmonella-induced macrophage death: the role of caspase-1 in death and inflammation. Microbes Infect 3:1201–1212

    Google Scholar 

  123. Siegmund B (2002) Interleukin-1β converting enzyme (caspase-1) in intestinal inflammation. Biochem Pharm 64:1–8

    Article  PubMed  CAS  Google Scholar 

  124. Lamkanfi M, Declercq W, Saelens X, Vandenabeele P (2002) Alice in caspase land. A phylogenetic analysis of caspases from worm to man. Cell Death Differ 9:358–361

    Article  PubMed  CAS  Google Scholar 

  125. Arai H, Furuya T, Yasuda T, Miura M, Mizuno Y, Mochizuki H (2004) Neurotoxic effects of lipopolysaccharide on nigral dopaminergic neurons are mediated by microglial activation, interleukin-1β, and expression of caspase-11 in mice. J Biol Chem 279:51637–51653

    Article  CAS  Google Scholar 

  126. Li J, Brieher WM, Scimone ML, Kang SJ, Zhu H, Yin H et al (2007) Caspase-11 regulates cell migration by promoting Aip1-Cofilin-mediated actin depolymerization. Nat Cell Biol 9(3):276–286

    Article  PubMed  CAS  Google Scholar 

  127. Enari M, Talanian RV, Wong WW, Nagata S (1996) Sequential activation of ICE-like and CPP32-like proteases during Fas-mediated apoptosis. Nature 380:723–726

    Article  PubMed  CAS  Google Scholar 

  128. Wang J, Ladrech S, Pujol R, Brabet P, Van De Water TR, Puel JL (2004) Caspase inhibitors, but not c-Jun NH2-terminal kinase inhibitor treatment, prevent cisplatin-induced hearing loss. Cancer Res 64:9217–9224

    Article  PubMed  CAS  Google Scholar 

  129. Chan SL, Mattson MP (1999) Caspase and calpain substrates: roles in synaptic plasticity and cell death. J Neurosci Res 58:167–190

    Article  PubMed  CAS  Google Scholar 

  130. Han Y, Weinman S, Boldogh I, Walker RK, Brasier AR (1999) Tumor necrosis factor-α-inducible IκBα proteolysis mediated by cytosolic m-calpain. J Biol Chem 274:787–794

    Article  PubMed  CAS  Google Scholar 

  131. Porn-Ares MI, Samali A, Orrenius S (1998) Cleavage of the calpain inhibitor, calpastatin, during apoptosis. Cell Death Differ 5:1028–1033

    Article  PubMed  CAS  Google Scholar 

  132. Jiang H, Sha SH, Forge A, Schacht J (2006) Caspase-independent pathways of hair cell death induced by kanamycin in vivo. Cell Death Differ 13:20–30

    Article  PubMed  CAS  Google Scholar 

  133. Lee CK, Weindruch R, Prolla TA (2000) Gene-expression profile of the ageing brain in mice. Nat Genet 25:294–297

    Article  PubMed  CAS  Google Scholar 

  134. Jiang CH, Tsien JZ, Schultz PG, Yinghe H (2001) The effects of aging on gene expression in the hypothalamus and cortex of mice. Proc Natl Acad Sci USA 98:1930–1934

    Article  PubMed  CAS  Google Scholar 

  135. Yoshida S, Yashar BM, Hiriyanna S, Swaroop A (2002) Microarray analysis of gene expression in the aging human retina. Invest Ophthalmol Vis Sci 43:2554–2560

    PubMed  Google Scholar 

Download references

Acknowledgements

The research was funded by NIH Grant P01 AG09524 from the Nat. Inst. on Aging, and P30 DC05409 from the Nat. Inst. on Deafness & Comm. Disorders.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert D. Frisina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tadros, S.F., D’Souza, M., Zhu, X. et al. Apoptosis-related genes change their expression with age and hearing loss in the mouse cochlea. Apoptosis 13, 1303–1321 (2008). https://doi.org/10.1007/s10495-008-0266-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-008-0266-x

Keywords

Navigation