Skip to main content

Advertisement

Log in

Mouse Models of Cognitive Disorders in Trisomy 21: A Review

  • Published:
Behavior Genetics Aims and scope Submit manuscript

Abstract

Trisomy 21 (TRS21) is the most frequent genetic cause of mental retardation. Although the presence of an extra copy of HSA21 is known to be at the origin of the syndrome, we do not know which 225 HSA21 genes have an effect on cognitive processes. Mouse models of TRS21 have been developed using syntenies between HSA21 and MMU16, MMU10 and MMU17. Available mouse models carry extra fragments of MMU16 or of HSA21 that cover all of HSA21 (chimeric HSA21) or MMU16 (Ts16); some carry large parts of MMU16 (Ts65Dn, Ts1Cje, Ms1Cje), while others have reduced contiguous fragments covering the D21S17-ETS2 region or single transfected genes. This offers a nest design strategy for deciphering cognitive (learning, memory and exploration) and associated brain abnormalities involving each of these chromosomal regions. This review confirms the crucial but not exclusive contribution of the D21S17-ETS2 region encompassing 16 genes to cognitive disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

References

  • Altafaj X., Dierssen M., Baamonde C., Marti E., Visa J., Guimera J., Oset M., Gonzalez J. R., Florez J., Fillat C. et al. (2001). Neurodevelopmental delay, motor abnormalities and cognitive deficits in transgenic mice overexpressing Dyrk1A (minibrain), a murine model of Down’s syndrome. Hum. Mol. Genet. 10:1915–1923

    Article  PubMed  CAS  Google Scholar 

  • Antonarakis S. E., Lyle R., Dermitzakis E. T., Reymond A., Deutsch S. (2004). Chromosome 21 and down syndrome: from genomics to pathophysiology. Nat. Rev. Genet. 5:725–738

    Article  PubMed  CAS  Google Scholar 

  • Baxter L. L., Moran T. H., Richtsmeier J. T., Troncoso J., Reeves R. H. (2000). Discovery and genetic localization of Down syndrome cerebellar phenotypes using the Ts65Dn mouse. Hum. Mol. Genet. 9:195–202

    Article  PubMed  CAS  Google Scholar 

  • Belichenko P. V., Masliah E., Kleschevnikov A. M., Villar A. J., Epstein C. J., Salehi A., Mobley W. C. (2004). Synaptic structural abnormalities in the Ts65Dn mouse model of Down Syndrome. J. Comp. Neurol. 480:281–298

    Article  PubMed  Google Scholar 

  • Bell K., Shokrian D., Potenzieri C., Whitaker-Azmitia P. M. (2003). Harm avoidance, anxiety, and response to novelty in the adolescent S-100beta transgenic mouse: role of serotonin and relevance to Down syndrome. Neuropsychopharmacology 28:1810–1816

    Article  PubMed  CAS  Google Scholar 

  • Bimonte-Nelson H. A., Hunter C. L., Nelson M. E., Granholm A. C. (2003). Frontal cortex BDNF levels correlate with working memory in an animal model of Down syndrome. Behav. Brain Res. 139:47–57

    Article  PubMed  CAS  Google Scholar 

  • Branchi I., Bichler Z., Minghetti L., Delabar J. M., Malchiodi-Albedi F., Gonzalez M.C., Chettouh Z., Nicolini A., Chabert C., Smith D. J. et al. (2004). Transgenic mouse in vivo library of human Down syndrome critical region 1: association between DYRK1A overexpression, brain development abnormalities, and cell cycle protein alteration. J. Neuropathol. Exp. Neurol. 63:429–440

    PubMed  CAS  Google Scholar 

  • Brown J. H., Johnson M. H., Paterson S. J., Gilmore R., Longhi E., Karmiloff-Smith A. (2003). Spatial representation and attention in toddlers with Williams syndrome and Down syndrome. Neuropsychology 41:1037–1046

    Article  Google Scholar 

  • Caycho L., Gunn P., Siegal M. (1991). Counting by children with Down syndrome. Am. J. Ment. Retard. 95:575–583

    PubMed  CAS  Google Scholar 

  • Chabert C., Jamon M., Cherfouh A., Duquenne V., Smith D. J., Rubin E. M., Roubertoux P. L. (2004). Functional analysis of genes implicated in Down Syndrome: 1. Cognitive abilities in Mice transpolygenic for Down Syndrome Chromosomal Region-1 (DCR-1). Behav. Genet. 34:559–569

    Article  PubMed  Google Scholar 

  • Chapman R. S., Hesketh L. J. (2000). Behavioral phenotype of individuals with Down syndrome. Ment. Retard Dev. Disabil. Res. Rev. 6:84–95

    Article  PubMed  CAS  Google Scholar 

  • Chrast R., Scott H. S., Madani R., Huber L., Wolfer D. P., Prinz M., Aguzzi A., Lipp H. P., Antonarakis S. E. (2000). Mice trisomic for a bacterial artificial chromosome with the single-minded 2 gene (Sim2) show phenotypes similar to some of those present in the partial trisomy 16 mouse models of Down syndrome. Hum. Mol. Genet. 9:1853–1864

    Article  PubMed  CAS  Google Scholar 

  • Clark D., Wilson G. N. (2003). Behavioral assessment of children with Down syndrome using the Reiss psychopathology scale. Am. J. Med. Genet. A 118:210–216

    Article  PubMed  Google Scholar 

  • Coussons-Read M. E., Crnic L. S. (1996). Behavioral assessment of the Ts65Dn mouse, a model for Down syndrome: altered behavior in the elevated plus maze and open field. Behav. Genet. 26:7–13

    Article  PubMed  CAS  Google Scholar 

  • Crnic L.S., Pennington B.F. (2000). Down syndrome: Neuropsychology and animal models. Progr. Infanc. Res. 1:69–111

    Google Scholar 

  • Davisson M. T., Schmidt C., Akeson E. C. (1990). Segmental trisomy of murine chromosome 16: a new model system for studying Down syndrome. Prog. Clin. Biol. Res. 360:263–280

    PubMed  CAS  Google Scholar 

  • Davisson M. T., Schmidt C., Reeves R. H., Irving N. G., Akeson E. C., Harris B. S., Bronson R. T. (1993). Segmental trisomy as a mouse model for Down syndrome. Prog. Clin. Biol. Res. 384:117–133

    PubMed  CAS  Google Scholar 

  • Delabar J.M., Theophile D., Rahmani Z., Chettouh Z., Blouin J. L., Prieur M., Noel B., Sinet P. M. (1993). Molecular mapping of twenty-four features of Down syndrome on chromosome 21. Eur. J. Hum. Genet. 1:114–124

    PubMed  CAS  Google Scholar 

  • Demas G. E., Nelson R. J., Krueger B. K., Yarowsky P. J. (1996). Spatial memory deficits in segmental trisomic Ts65Dn mice. Behav. Brain Res. 82:85–92

    Article  PubMed  CAS  Google Scholar 

  • Demas G. E., Nelson R. J., Krueger B. K., Yarowsky P. J. (1998). Impaired spatial working and reference memory in segmental trisomy (Ts65Dn) mice. Behav. Brain Res. 90:199–201

    Article  PubMed  CAS  Google Scholar 

  • Dierssen M., Fillat C., Crnic L., Arbones M., Florez J., Estivill X. (2001a). Murine models for Down syndrome. Physiol. Behav. 73:859–871

    Article  CAS  Google Scholar 

  • Dierssen, M., Marti, E., Pucharcos, C., Fotaki, V., Altafaj, X., Casas, K., Solans, A., Arbones, M.L., Fillat, C., and Estivill, X. (2001b). Functional genomics of Down syndrome: a multidisciplinary approach. J. Neural. Transm. Suppl.: 131–148

  • Ema M., Ikegami S., Hosoya T., Mimura J., Ohtani H., Nakao K., Inokuchi K., Katsuki M., Fujii-Kuriyama Y. (1999) Mild impairment of learning and memory in mice overexpressing the mSim2 gene located on chromosome 16: an animal model of Down’s syndrome. Hum. Mol. Genet. 8: 1409–1415

    Article  PubMed  CAS  Google Scholar 

  • Escorihuela R. M., Vallina I. F., Martinez-Cue C., Baamonde C., Dierssen M., Tobena A., Florez J., Fernandez-Teruel A. (1998) Impaired short- and long-term memory in Ts65Dn mice, a model for Down syndrome. Neurosci. Lett. 247: 171–174

    Article  PubMed  CAS  Google Scholar 

  • Fotaki V., Dierssen M., Alcantara S., Martinez S., Marti E., Casas C., Visa J., Soriano E., Estivill X., Arbones M. L. (2002) Dyrk1A haploinsufficiency affects viability and causes developmental delay and abnormal brain morphology in mice. Mol. Cell. Biol. 22: 6636–6647

    Article  PubMed  CAS  Google Scholar 

  • Fotaki V., Martinez De Lagran M., Estivill X., Arbones M., Dierssen M. (2004) Haploinsufficiency of Dyrk1A in mice leads to specific alterations in the development and regulation of motor activity. Behav. Neurosci. 118: 815–821

    Article  PubMed  CAS  Google Scholar 

  • Gahtan E., Auerbach J. M., Groner Y., Segal M. (1998) Reversible impairment of long-term potentiation in transgenic Cu/Zn-SOD mice. Eur. J. Neurosci. 10: 538–544

    Article  PubMed  CAS  Google Scholar 

  • Gerlai R., Roder J. (1993) Female specific hyperactivity in S100 beta transgenic mice does not habituate in open-field. Behav. Brain Res. 59: 119–124

    Article  PubMed  CAS  Google Scholar 

  • Gerlai R., Roder J. (1995) Abnormal exploratory behavior in transgenic mice carrying multiple copies of the human gene for S100 beta. J. Psych. Neurosci. 20: 105–112

    CAS  Google Scholar 

  • Gerlai R., Roder J. (1996) Spatial and nonspatial learning in mice: effects of S100 beta overexpression and age. Neurobiol. Learn. Mem. 66: 143–154

    Article  PubMed  CAS  Google Scholar 

  • Gitton Y., Dahmane N., Baik S., Ruiz i Altaba A., Neidhardt L., Scholze M., Herrmann B. G., Kahlem P., Benkahla A., Schrinner S. et al. (2002) A gene expression map of human chromosome 21 orthologues in the mouse. Nature 420: 586–590

    Article  PubMed  CAS  ADS  Google Scholar 

  • Granholm A. C., Sanders L. A., Crnic L. S. (2000) Loss of cholinergic phenotype in basal forebrain coincides with cognitive decline in a mouse model of Down’s syndrome. Exp. Neurol. 161: 647–663

    Article  PubMed  CAS  Google Scholar 

  • Gropp A., Kolbus U., Giers D. (1975) Systematic approach to the study of trisomy in the mouse. II. Cytogenet. Cell. Genet. 14: 42–62

    PubMed  CAS  Google Scholar 

  • Harris-Cerruti C., Kamsler A., Kaplan B., Lamb B., Segal M., Groner Y. (2004) Functional and morphological alterations in compound transgenic mice overexpressing Cu/Zn superoxide dismutase and amyloid precursor protein [correction]. Eur. J. Neurosci. 19: 1174–1190

    Article  PubMed  Google Scholar 

  • Hattori M., Fujiyama A., Taylor T. D., Watanabe H., Yada T., Park H. S., Toyoda A., Ishii K., Totoki Y., Choi D. K. et al. (2000) The DNA sequence of human chromosome 21. Nature 405: 311–319

    Article  PubMed  CAS  ADS  Google Scholar 

  • Hodapp R. M., Ewans D. E., Gray F. L. (1999) Intellectuel development in children with Down syndrome. In: Rondal J. -A., Perera J., Nadel L. (eds) Down Syndrome: A Review of Current Knowledge. Whurr Publisher, London, U.K., pp. 124–132

    Google Scholar 

  • Holtzman D. M., Santucci D., Kilbridge J., Chua-Couzens J., Fontana D. J., Daniels S. E., Johnson R. M., Chen K., Sun Y., Carlson E. et al. (1996) Developmental abnormalities and age-related neurodegeneration in a mouse model of Down syndrome. Proc. Natl. Acad. Sci. U.S.A. 93: 13333–13338

    Article  PubMed  CAS  ADS  Google Scholar 

  • Hunter C. L., Bimonte-Nelson H. A., Nelson M., Eckman C. B., Granholm A. C. (2004) Behavioral and neurobiological markers of Alzheimer’s disease in Ts65Dn mice: effects of estrogen. Neurobiol. Aging 25: 873–884

    Article  PubMed  CAS  Google Scholar 

  • Hyde L. A., Crnic L. S. (2002) Reactivity to object and spatial novelty is normal in older Ts65Dn mice that model Down syndrome and Alzheimer’s disease. Brain Res. 945: 26–30

    Article  PubMed  CAS  Google Scholar 

  • Hyde L. A., Frisone D. F., Crnic L. S. (2001) Ts65Dn mice, a model for Down syndrome, have deficits in context discrimination learning suggesting impaired hippocampal function. Behav. Brain Res. 118: 53–60

    Article  PubMed  CAS  Google Scholar 

  • Jackson J. F., North E. R. III, Thomas J. G. (1976) Clinical diagnosis of Down’s syndrome. Clin. Genet. 9: 483–487

    Article  PubMed  CAS  Google Scholar 

  • Janus C., Janus M., Roder J. (1995) Spatial exploration in transgenic mice expressing human beta-S100. Neurobiol. Learn. Mem. 64: 58–67

    Article  PubMed  CAS  Google Scholar 

  • Kahlem P., Sultan M., Herwig R., Steinfath M., Balzereit D., Eppens B., Saran N. G., Pletcher M. T., South S. T., Stetten G. et al. (2004) Transcript level alterations reflect gene dosage effects across multiple tissues in a mouse model of down syndrome. Genome Res. 14: 1258–1267

    Article  PubMed  CAS  Google Scholar 

  • Klein R. C., Siarey R. J., Caruso A., Rapoport S. I., Castellino F. J., Galdzicki Z. (2001) Increased expression of NR2A subunit does not alter NMDA-evoked responses in cultured fetal trisomy 16 mouse hippocampal neurons. J. Neurochem. 76: 1663–1669

    Article  PubMed  CAS  Google Scholar 

  • Kleschevnikov A. M., Belichenko P. V., Villar A. J., Epstein C. J., Malenka R. C., Mobley W. C. (2004) Hippocampal long-term potentiation suppressed by increased inhibition in the Ts65Dn mouse, a genetic model of Down syndrome. J. Neurosci. 24: 8153–8160

    Article  PubMed  CAS  Google Scholar 

  • Korenberg J. R., Chen X. N., Schipper R., Sun Z., Gonsky R., Gerwehr S., Carpenter N., Daumer C., Dignan P., Disteche C. et al. (1994) Down syndrome phenotypes: the consequences of chromosomal imbalance. Proc. Natl. Acad. Sci. U.S.A 91: 4997–5001

    Article  PubMed  CAS  ADS  Google Scholar 

  • Krinsky-McHale S. J., Devenny D. A., Silverman W. P. (2002) Changes in explicit memory associated with early dementia in adults with Down’s syndrome. J. Intellect. Disabil. Res. 46: 198–208

    Article  PubMed  CAS  Google Scholar 

  • Laws G. (2002) Working memory in children and adolescents with Down syndrome: evidence from a colour memory experiment. J. Child Psychol. Psych. 43: 353–364

    Article  Google Scholar 

  • Lejeune J. (1990) Pathogenesis of mental deficiency in trisomy 21. Am. J. Med. Genet. Suppl. 7: 20–30

    Article  PubMed  CAS  Google Scholar 

  • Lejeune J., Gautier M., Turpin R. (1959) [Study of somatic chromosomes from 9 mongoloid children.]. C. R. Hebd Seances Acad. Sci. 248: 1721–1722

    PubMed  CAS  Google Scholar 

  • Lyle R., Gehrig C., Neergaard-Henrichsen C., Deutsch S., Antonarakis S. E. (2004) Gene expression from the aneuploid chromosome in a trisomy mouse model of down syndrome. Genome Res. 14: 1268–1274

    Article  PubMed  CAS  Google Scholar 

  • Marti E., Altafaj X., Dierssen M., de la Luna S., Fotaki V., Alvarez M., Perez-Riba M., Ferrer I., Estivill X. (2003) Dyrk1A expression pattern supports specific roles of this kinase in the adult central nervous system. Brain Res. 964: 250–263

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Cue C., Baamonde C., Lumbreras M., Paz J., Davisson M. T., Schmidt C., Dierssen M., Florez J. (2002) Differential effects of environmental enrichment on behavior and learning of male and female Ts65Dn mice, a model for Down syndrome. Behav. Brain Res. 134: 185–200

    Article  PubMed  Google Scholar 

  • Milner B., Squire L. R., Kandel E. R. (1998) Cognitive neuroscience and the study of memory. Neuron 20: 445–468

    Article  PubMed  CAS  Google Scholar 

  • Moore C. S., Lee J. S., Birren B., Stetten G., Baxter L. L., Reeves R. H. (1999) Integration of cytogenetic with recombinational and physical maps of mouse chromosome 16. Genomics 59: 1–5

    Article  PubMed  CAS  Google Scholar 

  • Muller W., Heinemann U., Schuchmann S. (1997) Impaired Ca-signaling in astrocytes from the Ts16 mouse model of Down syndrome. Neurosci. Lett. 223: 81–84

    Article  PubMed  CAS  Google Scholar 

  • Patterson D., Costa A. C. (2005) Down syndrome and genetics—a case of linked histories. Nat. Rev. Genet. 6: 137–147

    Article  PubMed  CAS  Google Scholar 

  • Peled-Kamar M., Degani H., Bendel P., Margalit R., Groner Y. (1998) Altered brain glucose metabolism in transgenic-PFKL mice with elevated L-phosphofructokinase: in vivo NMR studies. Brain Res. 810: 138–145

    Article  PubMed  CAS  Google Scholar 

  • Pennington B. F., Moon J., Edgin J., Stedron J., Nadel L. (2003) The neuropsychology of Down syndrome: evidence for hippocampal dysfunction. Child Dev. 74: 75–93

    Article  PubMed  Google Scholar 

  • Poissonnier M., Saint-Paul B., Dutrillaux B., Chassaigne M., Gruyer P., de Blignieres-Strouk G. (1976) [Partial trisomy 21 (21q21 - 21q22.2)]. Ann. Genet. 19: 69–73

    PubMed  CAS  Google Scholar 

  • Raz N., Torres I. J., Briggs S. D., Spencer W. D., Thornton A. E., Loken W. J., Gunning F. M., McQuain J. D., Driesen N. R., Acker J. D. (1995) Selective neuroanatomic abnormalities in Down’s syndrome and their cognitive correlates: evidence from MRI morphometry. Neurology 45: 356–366

    PubMed  CAS  Google Scholar 

  • Reeves R. H., Irving N. G., Moran T. H., Wohn A., Kitt C., Sisodia S. S., Schmidt C., Bronson R. T., Davisson M. T. (1995) A mouse model for Down syndrome exhibits learning and behaviour deficits. Nat. Genet. 11: 177–184

    Article  PubMed  CAS  Google Scholar 

  • Roder J. K., Roder J. C., Gerlai R. (1996) Memory and the effect of cold shock in the water maze in S100 beta transgenic mice. Physiol. Behav. 60: 611–615

    Article  PubMed  CAS  Google Scholar 

  • Roizen N. J., Patterson D. (2003) Down’s syndrome. Lancet 361: 1281–1289

    Article  PubMed  Google Scholar 

  • Roubertoux P., Sérégaza Z., Jamon M., Bichler Z., Pinoteau W., Smith D. J., Rubin E. M., Carlier M. (2005) Functional analysis of genes implicated in Down Syndrome: 2. laterality in mice transpolygenic for Down Syndrome Chromosomal Region-1 (DCR-1). Behav. Genet. 35: 333–341

    Article  PubMed  Google Scholar 

  • Sago H., Carlson E. J., Smith D. J., Kilbridge J., Rubin E. M., Mobley W. C., Epstein C. J., Huang T. T. (1998) Ts1Cje, a partial trisomy 16 mouse model for Down syndrome, exhibits learning and behavioral abnormalities. Proc. Natl. Acad. Sci. U.S.A 95: 6256–6261

    Article  PubMed  CAS  ADS  Google Scholar 

  • Sago H., Carlson E. J., Smith D. J., Rubin E. M., Crnic L. S., Huang T. T., Epstein C. J. (2000) Genetic dissection of region associated with behavioral abnormalities in mouse models for Down syndrome. Pediatr. Res. 48: 606–613

    PubMed  CAS  Google Scholar 

  • Schuchmann S., Muller W., Heinemann U. (1998) Altered Ca2+ signaling and mitochondrial deficiencies in hippocampal neurons of trisomy 16 mice: a model of Down’s syndrome. J. Neurosci. 18: 7216–7231

    PubMed  CAS  Google Scholar 

  • Shapiro L. A., Marks A., Whitaker-Azmitia P. M. (2004) Increased clusterin expression in old but not young adult S100B transgenic mice: evidence of neuropathological aging in a model of Down Syndrome. Brain Res. 1010: 17–21

    Article  PubMed  CAS  Google Scholar 

  • Shinohara T., Tomizuka K., Miyabara S., Takehara S., Kazuki Y., Inoue J., Katoh M., Nakane H., Iino A., Ohguma A. et al. (2001) Mice containing a human chromosome 21 model behavioral impairment and cardiac anomalies of Down’s syndrome. Hum. Mol. Genet. 10: 1163–1175

    Article  PubMed  CAS  Google Scholar 

  • Siarey R. J., Carlson E. J., Epstein C. J., Balbo A., Rapoport S. I., Galdzicki Z. (1999) Increased synaptic depression in the Ts65Dn mouse, a model for mental retardation in Down syndrome. Neuropharmacology 38: 1917–1920

    Article  PubMed  CAS  Google Scholar 

  • Siarey R. J., Stoll J., Rapoport S. I., Galdzicki Z. (1997) Altered long-term potentiation in the young and old Ts65Dn mouse, a model for Down Syndrome. Neuropharmacology 36: 1549–1554

    Article  PubMed  CAS  Google Scholar 

  • Smith D. J., Rubin E. M. (1997) Functional screening and complex traits: human 21q22.2 sequences affecting learning in mice. Hum. Mol. Genet. 6: 1729–1733

    Article  PubMed  CAS  Google Scholar 

  • Smith D. J., Zhu Y., Zhang J., Cheng J. F., Rubin E. M. (1995) Construction of a panel of transgenic mice containing a contiguous 2-Mb set of YAC/P1 clones from human chromosome 21q22.2. Genomics 27: 425–434

    Article  PubMed  CAS  Google Scholar 

  • Stasko M. R., Costa A. C. (2004) Experimental parameters affecting the Morris water maze performance of a mouse model of Down syndrome. Behav. Brain Res. 154: 1–17

    Article  PubMed  Google Scholar 

  • Turner C. A., Presti M. F., Newman H. A., Bugenhagen P., Crnic L., Lewis M. H. (2001) Spontaneous stereotypy in an animal model of Down syndrome: Ts65Dn mice. Behav. Genet. 31: 393–400

    Article  PubMed  CAS  Google Scholar 

  • Wenger G. R., Schmidt C., Davisson M. T. (2004) Operant conditioning in the Ts65Dn mouse: learning. Behav. Genet. 34: 105–119

    Article  PubMed  Google Scholar 

  • Whitaker-Azmitia P. M., Wingate M., Borella A., Gerlai R., Roder J., Azmitia E. C. (1997) Transgenic mice overexpressing the neurotrophic factor S-100 beta show neuronal cytoskeletal and behavioral signs of altered aging processes: implications for Alzheimer’s disease and Down’s syndrome. Brain Res. 776: 51–60

    Article  PubMed  CAS  Google Scholar 

  • Winocur G., Roder J., Lobaugh N. (2001) Learning and memory in S100-beta transgenic mice: an analysis of impaired and preserved function. Neurobiol. Learn. Mem. 75: 230–243

    Article  PubMed  CAS  Google Scholar 

  • Zang da W., Yang Q., Wang H.X., Egan G., Lopes E.C., Cheema S.S. (2004) Magnetic resonance imaging reveals neuronal degeneration in the brainstem of the superoxide dismutase 1 transgenic mouse model of amyotrophic lateral sclerosis. Eur. J. Neurosci. 20: 1745–1751

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The study was funded by the CNRS (UMR 6196 CNRS-Université de la Méditerranée: P3M, Génomique Fonctionnelle, Pathologies, Comportements, and UMR CNRS 6149, Neurobiologie intégrative et adaptative, Centre Saint-Charles, Marseille, France); Ministère de la Recherche et de la Technologie (Université de la Méditerranée and Université de Provence) and a grant, for Zohra Sérégaza, from the Fondation Jérôme Lejeune. We wish to thank Michèle Carlier for her helpful discussions while writing up the report. We also wish to express our gratitude to the Board of the Fondation Jérôme Lejeune for both the financial support and fruitful scientific discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre L. Roubertoux.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sérégaza, Z., Roubertoux, P., Jamon, M. et al. Mouse Models of Cognitive Disorders in Trisomy 21: A Review. Behav Genet 36, 387–404 (2006). https://doi.org/10.1007/s10519-006-9056-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10519-006-9056-9

Keywords:

Navigation