Skip to main content
Log in

Genetic and Structural Analysis of the Basolateral Amygdala Complex in BXD Recombinant Inbred Mice

  • Original Paper
  • Published:
Behavior Genetics Aims and scope Submit manuscript

Abstract

The amygdala integrates and coordinates emotional and autonomic responses. The genetics that underlie variation in amygdala structure may be coupled to variation in levels of aggression, fear, anxiety, and affiliated behaviors. We systematically quantified the volume and cell populations of the basolateral amygdala complex (BLAc) across 35 BXD recombinant inbred (RI) lines, the parental strains—C57BL/6J (B6) and DBA/2J (D2)—and F1 hybrids (n cases = 199, bilateral analysis). Neuron number and volume vary 1.7- to 2-fold among strains (e.g., neuron number ranged from 88,000 to 170,000). Glial and endothelial populations ranged more widely (5- to 8-fold), in part because of higher technical error. A quantitative trait locus (QTL) for the BLAc size is located on chromosome (Chr) 8 near the Large gene. This locus may also influence volume of other regions including hippocampus and cerebellum. Cell populations in the BLAc appear to be modulated more weakly by loci on Chrs 11 and 13. Candidate genes were selected on the basis of correlation with BLAc traits, chromosomal location, single nucleotide polymorphism (SNP) density, and expression patterns in the Allen Brain Atlas. Neurod2, a gene shown to be significant for the formation of the BLAc by knockout studies, is among the candidates genes. Other candidates include Large, and Thra. Responses to drugs of abuse and locomotor activity were the most notable behavioral correlates of the BLAc traits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abell F, Krams M, Ashburner J, Passingham R, Friston K, Frackowiak R, Happe F, Frith C, Frith U (1999). The neuroanatomy of autism: a voxel-based whole brain analysis of structural scans. Neuroreport 10:1647–1651

    Article  PubMed  CAS  Google Scholar 

  • Airey DC, Lu L, Shou S, Williams RW (2002) Genetic sources of individual differences in the cerebellum. Cerebellum 1:233–240

    Article  PubMed  Google Scholar 

  • Airey DC, Lu L, Williams RW (2001) Genetic control of the mouse cerebellum: identification of quantitative trait loci modulating size and architecture. J Neurosci 21:5099–5109

    PubMed  CAS  Google Scholar 

  • Airey DC, Robbins AI, Enzinger KM, Wu F, Collins CE (2005) Variation in the cortical area map of C57BL/6J and DBA/2J inbred mice predicts strain identity. BMC Neurosci 6:18

    Article  PubMed  CAS  Google Scholar 

  • Barton RA, Harvey PH (2000) Mosaic evolution of brain structure in mammals. Nature 405:1055–1058

    Article  PubMed  CAS  Google Scholar 

  • Baxter MG, Murray EA (2002) The amygdala and reward. Nature Rev Neurosci 3:563–573

    Article  CAS  Google Scholar 

  • Beatty J, Laughlin RE (2006) Genomic regulation of natural variation in cortical and noncortical brain volume. BMC Neurosci 7:16

    Article  PubMed  CAS  Google Scholar 

  • Blumber HP, Kaufman J, Martin A, Whiteman R, Zhang JH, Gore JC, Charney DS, Krystal JH, Peterson BS (2003) Amygdala and hippocampal volumes in adolescents and adults with bipolar disorder. Arch Gen Psychiatr 60:1201–1208

    Article  Google Scholar 

  • Bolivar V, Flaherty L (2003) A region on chromosome 15 controls intersession habituation in mice. J Neurosci 23:9435–9438

    PubMed  CAS  Google Scholar 

  • Bolivar VJ, Flaherty L (2004) Genetic control of novel food preference in mice. Mamm Genome 15:193–198

    Article  PubMed  CAS  Google Scholar 

  • Brockington M, Torelli S, Prandini P, Boito C, Dolatshad NF, Longman C, Brown SC, Muntoni F (2005) Localization and functional analysis of the LARGE family of glycosyltransferase: significance for muscular dystrophy. Hum Mol Genet 14:657–665

    Article  PubMed  CAS  Google Scholar 

  • Bystrykh L, Weersing E, Dontje B, Sutton S, Pletcher MT, Wiltshire T, Su AI, Vellenga E, Wang J, Manly KF, Lu L, Chesler EJ, Alberts R, Jansen RC, Williams RW, Cooke MP, de Haan G (2005) Uncovering regulatory pathways that effect hematopoietic stem cell function using ‘genetical genomics’. Nat Genet 37:225–232

    Article  PubMed  CAS  Google Scholar 

  • Cai L, Morrow EM, Cepko CL (2000) Misexpression of basic helix–loop–helix genes in the murine cerebral cortex affects cell fate choices and neuronal survival. Development 127:3021–3030

    PubMed  CAS  Google Scholar 

  • Calder AJ, Lawrence AD, Young AW (2001) Neuropsychology of fear and loathing. Nature Rev Neurosci 2:352–363

    Article  CAS  Google Scholar 

  • Chesler EJ, Lu L, Shou S, Qu Y, Gu J, Wang J, Hsu HC, Mountz JD, Baldwin NE, Langston MA, Threadgill DW, Manly KF, Williams RW (2005) Complex trait analysis of gene expression uncovers polygenic and pleiotropic networks that modulate nervous system function. Nat Genet 37:233–242

    Article  PubMed  CAS  Google Scholar 

  • Chesler EJ, Wang J, Lu L, Qu Y, Manly KF, Williams RW (2003) Genetic correlates of gene expression in recombinant inbred strains: a relational model system to explore neurobehavioral phenotypes. Neuroinformatics 1:343–357

    Article  PubMed  Google Scholar 

  • Crabbe JC, Kosobud A, Young ER, Janowsky JS (1983) Polygenic and single-gene determination of responses to ethanol in BXD/Ty recombinant inbred mouse strains. Neurobehav Toxicol Teratol 5:181–187

    PubMed  CAS  Google Scholar 

  • Cunningham CL (1995) Localization of genes influencing ethanol-induced conditioned place preference and locomotor activity in BXD recombinant inbred mice. Psychopharmacology (Berl) 120:28–41

    Article  CAS  Google Scholar 

  • Demarest K, Koyner J, McCaughran J Jr, Cipp L, Hitzemann R (2001) Further characterization and high-resolution mapping of quantitative trait loci for ethanol-induced locomotor activity. Behav Genet 31:79–91

    Article  PubMed  CAS  Google Scholar 

  • Di Ciano P, Everitt BJ (2004) Direct interactions between the basolateral amygdala and nucleus accumbens core underlie cocaine-seeking behavior by rats. J Neurosci 24:7167–7173

    Article  PubMed  CAS  Google Scholar 

  • Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics, 4th edn. Prentice Hall, Harlow, UK

  • Floyd DW, Jung KY, McCool BA (2003) Chronic ethanol ingestion facilitates N-methyl-D-aspartate receptor function and expression in rat lateral/basolateral amygdala neurons. J Pharmacol Exp Ther 307:1020–1029

    Article  PubMed  CAS  Google Scholar 

  • Franklin KBJ, Paxinos G (2001) The mouse brain in stereotaxic coordinates. Academic Press, San Diego

    Google Scholar 

  • Friedman DP, Aggleton JP, Saunders RC (2002) Comparison of hippocampal, amygdala, and perirhinal projections to the nucleus accumbens: combined anterograde and retrograde tracing study in the Macaque brain. J Comp Neurol 450:345–365

    Article  PubMed  Google Scholar 

  • Fuchs RA, Feltenstein MW, See RE (2006) The role of the basolateral amygdala in stimulus-reward memory and extinction memory consolidation and in subsequent conditioned cues reinstatement of cocaine seeking. Eur J Neurosci 23:2809–2813

    Article  PubMed  Google Scholar 

  • Guadaño-Ferraz A, Benavides-Piccione R, Venero C, Lancha C, Vennström B, Sandi C, DeFelipe J, Bernal J (2003) Lack of thyroid hormone receptor α1 is associated with selective alterations in behavior and hippocampal circuits. Mol Psychiatr 8:30–38

    Article  CAS  Google Scholar 

  • Gundersen HJG (1977) Notes on the estimation of the numerical density of arbitrary profiles: The edge effect. J Micros 111:21–23

    Google Scholar 

  • Hariri AR, Holmes A (2006) Genetics of emotional regulation: the role of the serotonin transporter in neural function. Trends Cogn Sci 10:182–191

    Article  PubMed  Google Scholar 

  • Ida M, Shuo T, Hirano K, Tokita Y, Nakanishi K, Matsui F, Aono S, Fujita H, Fujiwara Y, Kaji T, Oohira A (2006) Identfication and function of chondroitin sulfate in the milieu of neural stem cells. J Biol Chem 281:5982–5991

    Article  PubMed  CAS  Google Scholar 

  • Jones BC, Tarantino LM, Rodriguez LA, Reed CL, McClearn GE, Plomin R, Erwin VG (1999) Quantitative-trait loci analysis of cocaine-related behaviours and neurochemistry. Pharmacogenetics 9:607–617

    Article  PubMed  CAS  Google Scholar 

  • Kempermann G, Chesler EJ, Lu L, Williams RW, Gage FH (2006) Natural variation and genetic covariance in adult hippocampal neurogenesis. Proc Natl Acad Sci USA 103:780–785

    Article  PubMed  CAS  Google Scholar 

  • LeDoux JE (2000) Emotion circuits in the brain. Annu Rev Neurosci 23:155–184

    Article  PubMed  CAS  Google Scholar 

  • Lee GP, Meador KJ, Loring DW, Allison JD, Brown WS, Paul LK, Pillai JJ, Lavin TB (2004) Neural substrates of emotion as revealed by functional magnetic resonance imaging. Cog Behav Neurol 17:9–17

    Article  Google Scholar 

  • Li CX, Wei X, Lu L, Peirce JL Williams RW, Waters RS (2005) Genetic analysis of barrel field size in the first somatosensory area (S1) in inbred and recombinant inbred strains of mice. Somatosens Mol Res 22:141–150

    Article  Google Scholar 

  • Lin CH, Hansen S, Wang Z, Storm DR, Tapscott SJ, Olson JM (2005) The dosage of the neuroD2 transcription factor regulates amygdala development and emotional learning. Proc Natl Acad Sci USA 102:14877–14882

    Article  PubMed  CAS  Google Scholar 

  • Ling EA, Paterson JA, Privat A, Mori S, Leblond CP (1973) Investigation of glial cells in semithin sections. I. Identification of glial cells in the brain of young rats. J Comp Neurol 149:43–71

    Article  PubMed  CAS  Google Scholar 

  • Lu L, Airey DC, Williams RW (2001) Complex trait analysis of the hippocampus: mapping and biometric analysis of two novel gene loci with specific effects on hippocampal structure in mice. J Neurosci 21:3503–3514

    PubMed  CAS  Google Scholar 

  • McGaugh JL (2004) The amygdala modulates the consolidation of memories of emotionally arousing experiences. Annu Rev Neurosci 27:1–28

    Article  PubMed  CAS  Google Scholar 

  • McIntyre CK, Power AE, Roozendaal B, McGaugh JL (2003) Role of the basolateral amygdala in memory consolidation. Ann NY Acad Sci 985:273–293

    Article  PubMed  CAS  Google Scholar 

  • Meyer-Lindenberg A, Buckholtz JW, Kolachana B, Hariri AR, Pezawas L, Blasi G, Wabnitz A, Honea R, Verchinski B, Callicott JH, Egan M, Mattay V, Weinberger DR (2006) Neural mechanisms of genetic risk for impulsivity and violence in humans. Proc Natl Acad Sci USA 103:6269–6274

    Article  PubMed  CAS  Google Scholar 

  • Neumann PE, Garretson JD, Skabardonis GP, Mueller GG (1993) Genetic analysis of cerebellar folial pattern in crosses of C57BL/6J and DBA/2J inbred mice. Brain Res 619:81–88

    Article  PubMed  CAS  Google Scholar 

  • Niu L, Matsui M, Zhou SY, Hagino H, Takahashi T, Yoneyama E, Kawasaki Y, Susuki M, Seto H, Ono T, Kurachi M (2004) Volume reduction of the amygdala in patients with schizophrenia: a magnetic resonance imaging study. Psychiatr Res 132:41–51

    Article  Google Scholar 

  • Oohira A, Matsui F, Tokita Y, Yamauchi S, Aono S (2000) Molecular interactions of neural chondroitin sulfate proteoglycans in the brain development. Arch Biochem Biophys 374:24–34

    Article  PubMed  CAS  Google Scholar 

  • Palmer AA, Miller MN, McKinnon CS, Phillips TJ (2002) Sensitivity to the locomotor stimulant effects of ethanol and allopregnanolone is influenced by common genes. Behav Neurosci 116:126–137

    Article  PubMed  CAS  Google Scholar 

  • Peirce JL, Chesler EJ, Williams RW, Lu L (2003) Genetic architecture of the mouse hippocampus: identification of gene loci with selective regional effects. Genes Brain Behav 2:238–252

    Article  PubMed  CAS  Google Scholar 

  • Peirce JL, Lu L, Gu J, Silver LM, Williams RW (2004) A new set of BXD recombinant inbred lines from advanced intercross population in mice. BMC Genetics 5: 7

    Article  PubMed  Google Scholar 

  • Phillips AG, Ahn S, Howland JG (2003) Amygdalar control of the mesocorticolimbic dopamine system: parallel pathways to motivated behavior. Neurosci Biobehav Rev 27:543–554

    Article  PubMed  CAS  Google Scholar 

  • Phillips TJ, Huson MG, McKinon CS (1998) Localization of genes mediating acute and sensitized locomotor responses to cocaine in BXD/Ty recombinant inbred mice. J Neurosci 18:3023–3034

    PubMed  CAS  Google Scholar 

  • Phillips TJ, Lessov CN, Harland RD, Mitchell SR (1996) Evaluation of potential genetic associations between ethanol tolerance and sensitization in BXD/Ty recombinant inbred mice. J Pharmacol Exp Ther 277:613–623

    PubMed  CAS  Google Scholar 

  • Pitkänen A (2000) Connectivity of the rat amygdaloid complex. In Aggleton JP (eds) The amygdala, 2nd edn. Oxford University Press Inc., New York

    Google Scholar 

  • Pitkänen A, Savander V, LeDoux JE (1997) Organization of intra-amygdaloid circuitries in the rat: an emerging framework for understanding functions of the amygdala. Trends Neurosci 20:517–523

    Article  PubMed  Google Scholar 

  • Prather MD, Lavenex P, Mauldin-Jourdain ML, Mason WA, Capitanio JP, Mendoza SP, Amaral DG (2001) Increased social fear and decreased fear of objects in monkeys with neonatal amygdala lesions. Neuroscience 106:653–658

    Article  PubMed  CAS  Google Scholar 

  • Reiss AL, Eckert MA, Rose FE, Karchemskiy A, Kesler S, Chang M, Reynolds MF, Kwon H, Galaburga A (2004) An experiment of nature: brain anatomy parallels cognition and behavior in Williams syndrome. J Neurosci 24:5009–5015

    Article  PubMed  CAS  Google Scholar 

  • Risinger FO, Cunningham CL (1998) Ethanol-induced conditioned taste aversion in BXD recombinant inbred mice. Alcohol Clin Exp Res 22:1234–1244

    PubMed  CAS  Google Scholar 

  • Rogan MT, LeDoux JE (1996) Emotion: systems, cells, synaptic plasticity. Cell 85:469–475

    Article  PubMed  CAS  Google Scholar 

  • Rosen GD, La Porte NT, Diechtiareff B, Pung CJ, Nissanov J, Gustafson C, Bertrand L, Gefen S, Fan Y, Tretiak OJ, Manly KF, Parks MR, Williams AG, Connolly MT, Capra JA, Williams RW (2003) Informatics center for mouse genomics: the dissection of complex traits of the nervous system. Neuroinformatics 1:327–342

    Article  PubMed  Google Scholar 

  • Rosen GD, Williams RW (2001) Complex trait analysis of the mouse striatum: independent QTLs modulate volume and neuron number. BMC Neurosci 2:5

    Article  PubMed  CAS  Google Scholar 

  • Rosso IM, Cintron CM, Steingard RJ, Renshaw PF, Young AD, Yurgelun-Todd DA (2005) Amygdala and hippocampus volumes in pediatric major depression. Biol Psychiatr 57:21–26

    Article  Google Scholar 

  • Rosvold HE, Mirsky AF, Pribram KH (1954) Influence of amygdalectomy on social behavior in monkeys. J Comp Physiol Psychol 47:173–178

    Article  PubMed  CAS  Google Scholar 

  • Ryabinin AE, Wang YM, Freeman P, Risinger FO (1999) Selective effects of alcohol drinking on restraint-induced expression of immediate early genes in mouse brain. Alcohol Clin Exp Res 23:1272–1280

    Article  PubMed  CAS  Google Scholar 

  • Satorre J, Cano J, Reinoso-Suarez F (1986) Quantitative cellular changes during postnatal development of the rat dorsal lateral geniculate nucleus. Anat Embryol 174:321–327

    Article  PubMed  CAS  Google Scholar 

  • See RE, Fuchs RA, Ledford CC, McLaughlin J (2003) Drug addiction, relapse, and the amygdala. Ann NY Acad Sci 985:294–307

    Article  PubMed  CAS  Google Scholar 

  • Seecharan DJ, Kulkarni AL, Lu L, Rosen GD, Williams RW (2003) Genetic control of interconnected neuronal populations in the mouse primary visual system. J Neurosci 23:11178–11188

    PubMed  CAS  Google Scholar 

  • Sharpe AL, Tsivkovskaia NO, Ryabinin AE (2005) Ataxia and c-Fos expression in mice drinking ethanol in a limited access session. Alcohol Clin Exp Res 29:1419–1426

    Article  PubMed  CAS  Google Scholar 

  • Shifman S, Bell JT, Copley RR, Taylor M, Williams RW, Mott R, Flint J (2006) A high resolution single nucleotide polymorphism genetic map of the mouse genome. PLoS Biol 4:e395

    Article  PubMed  CAS  Google Scholar 

  • Swanson LW, Petrovich GD (1998) What is the amygdala? Trends Neurosci 21:323–331

    Google Scholar 

  • Taylor BA (1989) Recombinant inbred strains. In Lyon ML, Searle AG (eds) Genetic variants and strains of the laboratory mouse, 2nd edn. Oxford UP, Oxford, pp 773–796

    Google Scholar 

  • Taylor BA, Wnek C, Kotlus BS, Roemer N, MacTaggart T, Phillips SJ (1999) Genotyping new BXD recombinant inbred mouse strains and comparison of BXD and consensus maps. Mamm. Genome 10:335–348

    Article  PubMed  CAS  Google Scholar 

  • Trinh JV, Nehrenberg DL, Jacobsen JR, Caron MG, Wetsel WC (2003) Differential psychostimulant-induced activation of neural circuits in dopamine transporter knockout and wild type mice. Neurosci 118:297–310

    Article  CAS  Google Scholar 

  • Venero C, Guadaño-Ferraz A, Herrero AI, Norström K, Manzano J, de Escobar GM, Bernal J, Vennström B (2005) Anxiety, memory impairment, and locomotor dysfunction caused by a mutant thyroid hormone receptor α1 can be ameliorated by T3 treatment. Genes Dev 19:2152–2163

    Article  PubMed  CAS  Google Scholar 

  • von Bartheld CS (2001) Comparison of 2-D and 3-D counting: the need for calibration and common sense. Trends Neurosci 24:504–506

    Article  Google Scholar 

  • Wakana S, Sugaya E, Naramoto F, Yokote N, Maruyama C, Jin W, Ohguchi H, Tsuda T, Sugaya A, Kajiwara K (2000) Gene mapping of SEZ group genes and determination of pentylenetetrazol susceptibility quantitative trait loci in the mouse chromosome. Brain Res 857:286–290

    Article  PubMed  CAS  Google Scholar 

  • Williams RW (2000) Mapping genes that modulate mouse brain development: a quantitative genetic approach. In Goffinet A, Rakic P (eds) Mouse brain development. Springer, Berlin pp 21–49

    Google Scholar 

  • Williams RW, Airey DC, Kulkarni A, Zhou G, Lu L (2001) Genetic dissection of the olfactory bulbs of mice: QTLs on four Chrs modulate bulb size. Behav Genet 31:61–77

    Article  PubMed  CAS  Google Scholar 

  • Williams RW, Rakic P (1988) Three-dimensional counting: an accurate and direct method to estimate numbers of cells in sectioned material. J Comp Neurol 278:344–352

    Article  PubMed  CAS  Google Scholar 

  • Williams RW, Strom RC, Rice DS, Goldowitz D (1996) Genetic and environmental control of variation in retinal ganglion cell number in mice. J Neurosci 15:7193–7205

    Google Scholar 

  • Yang RJ, Mozhui K, Karlsson R, Cameron HA, Williams RW, Holmes A. Genetically-driven variation in basolateral amygdala volume is associated with fear learning and stress-reactivity in mice (submitted)

Download references

Acknowledgments

The authors would like to thank Arthur G. Centeno and Dave J. Seecharan for technical assistance. We thank Dr. Glenn D. Rosen and colleagues for building the Mouse Brain Library. We thank Dr. Kenneth J. Manly, Jintao Wang, and Dr. Elissa J. Chesler for their many contributions to GeneNetwork. This study was supported by NIAAA-INIA (grants U01AA13499 and U24AA13513). GN is supported by NIDA, NIMH and NIAAA (grant P20-DA 21131), the NCRR BIRN (U01NR 105417), and the NCI MMHCC (U01CA105417).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lu Lu or Robert W. Williams.

Additional information

Edited by Gene Fisch

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mozhui, K., Hamre, K.M., Holmes, A. et al. Genetic and Structural Analysis of the Basolateral Amygdala Complex in BXD Recombinant Inbred Mice. Behav Genet 37, 223–243 (2007). https://doi.org/10.1007/s10519-006-9122-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10519-006-9122-3

Keywords

Navigation