Skip to main content
Log in

Musicianship Boosts Perceptual Learning of Pseudoword-Chimeras: An Electrophysiological Approach

  • Original Paper
  • Published:
Brain Topography Aims and scope Submit manuscript

Abstract

A vast amount of previous work has consistently revealed that professional music training is associated with functional and structural alterations of auditory-related brain regions. Meanwhile, there is also an increasing array of evidence, which shows that musicianship facilitates segmental, as well as supra-segmental aspects of speech processing. Based on this evidence, we addressed a novel research question, namely whether professional music training has an influence on the perceptual learning of speech sounds. In the context of an EEG experiment, we presented auditory pseudoword-chimeras, manipulated in terms of spectral- or envelope-related acoustic information, to a group of professional musicians and non-musicians. During EEG measurements, participants were requested to assign the auditory-presented pseudoword-chimeras to one out of four visually presented templates. As expected, both groups showed behavioural learning effects during the time course of the experiment. These learning effects were associated with an increase in accuracy, a decrease in reaction time, as well as a decrease in the P2-like microstate duration in both groups. Notably, the musicians showed an increased learning performance compared to the controls during the first two runs of the spectral condition. This perceptual learning effect, which varies as a function of musical expertise, was reflected by a reduction of the P2-like microstate duration. Results may mirror transfer effects from musical training to the processing of spectral information in speech sounds. Hence, this study provides first evidence for a relationship between changes in microstates, musical expertise, and perceptual verbal learning mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alain C, Campeanu S, Tremblay K (2010) Changes in sensory evoked responses coincide with rapid improvement in speech identification performance. J Cogn Neurosci 22(2):392–403. doi:10.1162/jocn.2009.21279

    Article  PubMed  Google Scholar 

  • Aleman A, Nieuwenstein MR, Bocker KB, de Haan EH (2000) Music training and mental imagery ability. Neuropsychologia 38(12):1664–1668

    Article  PubMed  CAS  Google Scholar 

  • Annett J (1970) Role of action feedback in acquisition of simple motor responses. J Motor Behav 2(3):217–221

    Google Scholar 

  • Baayen RH, Davidson DJ, Bates DM (2008) Mixed-effects modeling with crossed random effects for subjects and items. J Mem Lang 59(4):390–412. doi:10.1016/j.jml.2007.12.005

    Article  Google Scholar 

  • Baumann S, Meyer M, Jancke L (2008) Enhancement of auditory-evoked potentials in musicians reflects an influence of expertise but not selective attention. J Cogn Neurosci 20(12):2238–2249. doi:10.1162/jocn.2008.20157

    Article  PubMed  Google Scholar 

  • Ben-David BM, Campeanu S, Tremblay KL, Alain C (2010) Auditory evoked potentials dissociate rapid perceptual learning from task repetition without learning. Psychophysiology. doi:10.1111/j.1469-8986.2010.01139.x

    PubMed  Google Scholar 

  • Besson M, Schon D, Moreno S, Santos A, Magne C (2007) Influence of musical expertise and musical training on pitch processing in music and language. Restor Neurol Neurosci 25(3–4):399–410

    PubMed  Google Scholar 

  • Besson M, Chobert J, Marie Cl (2011) Transfer of training between music and speech: common processing, attention and memory. Frontiers in Psychology 2: 94. doi:10.3389/fpsyg.2011.00094

  • Bilhartz TD, Bruhn RA, Olson JE (1999) The effect of early music training on child cognitive development. J Appl Dev Psychol 20(4):615–636

    Article  Google Scholar 

  • Boh B, Herholz SC, Lappe C, Pantev C (2011) Processing of complex auditory patterns in musicians and nonmusicians. PLoS One 6(7):e21458. doi:10.1371/journal.pone.0021458.PONE-D-11-01681

    Article  PubMed  CAS  Google Scholar 

  • Brochard R, Dufour A, Despres O (2004) Effect of musical expertise on visuospatial abilities: evidence from reaction times and mental imagery. Brain Cogn 54(2):103–109. doi:10.1016/S0278-2626(03)00264

    Article  PubMed  Google Scholar 

  • Brysbaert M (2007) “The language-as-fixed-effect fallacy”: Some simple SPSS solutions to a complex problem. University of London, Royal Holloway

    Google Scholar 

  • Clark HH (1973) Language as fixed-effect fallacy: critique of language statistics in psychological research. J Verb Learn Verb Be 12(4):335–359

    Article  Google Scholar 

  • Draganova R, Wollbrink A, Schulz M, Okamoto H, Pantev C (2009) Modulation of auditory evoked responses to spectral and temporal changes by behavioral discrimination training. BMC Neurosci 10:143. doi:10.1186/1471-2202-10-143

    Article  PubMed  Google Scholar 

  • Elmer S, Meyer M, Jancke L (2012) Neurofunctional and behavioral correlates of phonetic and temporal categorization in musically trained and untrained subjects. Cereb Cortex 22(3):650–658. doi:bhr142 [pii] 10.1093/cercor/bhr142

  • Fort A, Delpuech C, Pernier J, Giard MH (2002) Dynamics of cortico-subcortical cross-modal operations involved in audio-visual object detection in humans. Cereb Cortex 12(10):1031–1039

    Article  PubMed  Google Scholar 

  • Gaab N, Tallal P, Kim H, Lakshminarayanan K, Archie JJ, Glover GH, Gabrieli JD (2005) Neural correlates of rapid spectrotemporal processing in musicians and nonmusicians. Ann N Y Acad Sci 1060:82–88. doi:10.1196/annals.1360.040

    Article  PubMed  CAS  Google Scholar 

  • Gordon E (1989) Advanced measures of music audition. GIA Publications, Chicago

  • Hillyard SA (1981) Selective auditory attention and early event-related potentials: a rejoinder. Can J Psychol 35(2):159–174

    Article  PubMed  CAS  Google Scholar 

  • Ho Y-C, Cheung M-C, Chan AS (2003) Music training improves verbal but not visual memory: cross-sectional and longitudinal explorations in children. Neuropsychology 17(3):439–450

    Article  PubMed  Google Scholar 

  • Hyde M (1997) The N1 response and its applications. Audiol Neurootol 2(5):281–307

    Article  PubMed  CAS  Google Scholar 

  • Hyde KL, Lerch J, Norton A, Forgeard M, Winner E, Evans AC, Schlaug G (2009) The effects of musical training on structural brain development: a longitudinal study. Ann N Y Acad Sci 1169:182–186. doi:10.1111/j.1749-6632.2009.04852.x

    Article  PubMed  Google Scholar 

  • Jancke L (1996) The hand performance test with a modified time limit instruction enables the examination of hand performance asymmetries in adults. Percept Motor Skill 82(3):735–738

    Article  CAS  Google Scholar 

  • Jancke L (2009) The plastic human brain. Restor Neurol Neurosci 27(5):521–538. doi:10.3233/RNN-2009-0519

    PubMed  Google Scholar 

  • Jung TP, Makeig S, Humphries C, Lee TW, McKeown MJ, Iragui V, Sejnowski TJ (2000) Removing electroencephalographic artifacts by blind source separation. Psychophysiology 37(2):163–178

    Article  PubMed  CAS  Google Scholar 

  • Kraus N, Chandrasekaran B (2010) Music training for the development of auditory skills. Nat Rev Neurosci 11(8):599–605. doi:10.1038/nrn2882

    Article  PubMed  CAS  Google Scholar 

  • Kraus N, Skoe E, Parbery-Clark A (2008) Auditory processing of pitch, timbre and time: implications for language and music. Paper presented at the 2008 Research symposium: hear our voices, Milwaukee

  • Kraus N, Skoe E, Parbery-Clark A, Ashley R (2009) Experience-induced malleability in neural encoding of pitch, timbre, and timing. Ann N Y Acad Sci 1169:543–557. doi:10.1111/j.1749-6632.2009.04549.x

    Article  PubMed  Google Scholar 

  • Krzanowski WJ, Lai YT (1988) A criterion for determining the number of groups in a data set using sum-of-squares clustering. Biometrics 44(1):23–34

    Article  Google Scholar 

  • Kuriki S, Kanda S, Hirata Y (2006) Effects of musical experience on different components of MEG responses elicited by sequential piano-tones and chords. J Neurosci 26(15):4046–4053. doi:10.1523/JNEUROSCI.3907-05.2006

    Article  PubMed  CAS  Google Scholar 

  • Lee KM, Skoe E, Kraus N, Ashley R (2009) Selective subcortical enhancement of musical intervals in musicians. J Neurosci 29(18):5832–5840. doi:10.1523/JNEUROSCI.6133-08.2009

    Article  PubMed  CAS  Google Scholar 

  • Lehmann D, Michel CM (2011) EEG-defined functional microstates as basic building blocks of mental processes. Clin Neurophysiol 122(6):1073–1074. doi:10.1016/j.clinph.2010.11.003

    Article  PubMed  Google Scholar 

  • Lehrl S (1977) Mehrfachwahl-wortschatz intelligenz test (MWT-B). Perimed, Erlangen

    Google Scholar 

  • Lehrl S, Gallwitz A, Blaha V, Fischer B (1991) Theorie und Messung der geistigen Leistungsfähigkeit mit dem Kurztest KAI. Vless, Ebersberg

    Google Scholar 

  • Locker L, Hoffman L, Bovaird JA (2007) On the use of multilevel modeling as an alternative to items analysis in psycholinguistic research. Behav Res Methods 39(4):723–730

    Article  PubMed  Google Scholar 

  • Luo H, Poeppel D (2007) Phase patterns of neuronal responses reliably discriminate speech in human auditory cortex. Neuron 54(6):1001–1010. doi:10.1016/j.neuron.2007.06.004

    Article  PubMed  CAS  Google Scholar 

  • Magne C, Schon D, Besson M (2006) Musician children detect pitch violations in both music and language better than nonmusician children: behavioral and electrophysiological approaches. J Cogn Neurosci 18(2):199–211. doi:10.1162/089892906775783660

    Article  PubMed  Google Scholar 

  • Marie C, Magne C, Besson M (2011) Musicians and the metric structure of words. J Cogn Neurosci 23(2):294–305. doi:10.1162/jocn.2010.21413

    Article  PubMed  Google Scholar 

  • Marques C, Moreno S, Castro SL, Besson M (2007) Musicians detect pitch violation in a foreign language better than nonmusicians: behavioral and electrophysiological evidence. J Cognit Neurosci 19(9):1453–1463

    Article  Google Scholar 

  • Meyer M, Baumann S, Jancke L (2006) Electrical brain imaging reveals spatio-temporal dynamics of timbre perception in humans. NeuroImage 32(4):1510–1523. doi:10.1016/j.neuroimage.2006.04.193

    Article  PubMed  Google Scholar 

  • Meyer M, Elmer S, Baumann S, Jancke L (2007) Short-term plasticity in the auditory system: differential neural responses to perception and imagery of speech and music. Restor Neurol Neurosci 25(3–4):411–431

    PubMed  Google Scholar 

  • Meyer M, Elmer S, Ringli M, Oechslin MS, Baumann S, Jancke L (2011) Long-term exposure to music enhances the sensitivity of the auditory system in children. Eur J Neurosci 34(5):755–765. doi:10.1111/j.1460-9568.2011.07795.x

    Article  PubMed  Google Scholar 

  • Michel CM, Koenig Th, Brandeis D, Gianotti LRR, Wackermann J (2009) Electrical neuroimaging in the time domain: microstate analysis. In: Michel CM, Koenig Th, Brandeis D, Gianotti LRR, Wackermann J (eds) Electrical neuroimaging. Cambridge University Press, Cambridge, pp 123–125

  • Milovanov R, Tervaniemi M (2011) The interplay between musical and linguistic aptitudes: a review. Frontiers in Psychol 2. doi:10.3389/fpsyg.2011.00321

  • Moreno S, Marques C, Santos A, Santos M, Castro SL, Besson M (2009) Musical training influences linguistic abilities in 8-year-old children: more evidence for brain plasticity. Cereb Cortex 19(3):712–723. doi:10.1093/cercor/bhn120

    Article  PubMed  Google Scholar 

  • Munte TF, Altenmuller E, Jancke L (2002) The musician’s brain as a model of neuroplasticity. Nat Rev Neurosci 3(6):473–478

    PubMed  Google Scholar 

  • Murray MM, Wylie GR, Higgins BA, Javitt DC, Schroeder CE, Foxe JJ (2002) The spatiotemporal dynamics of illusory contour processing: combined high-density electrical mapping, source analysis, and functional magnetic resonance imaging. J Neurosci 22(12):5055–5073

    PubMed  CAS  Google Scholar 

  • Murray MM, Michel CM, Grave de Peralta R, Ortigue S, Brunet D, Gonzalez Andino S, Schnider A (2004) Rapid discrimination of visual and multisensory memories revealed by electrical neuroimaging. NeuroImage 21(1):125–135

    Article  PubMed  Google Scholar 

  • Murray MM, Brunet D, Michel CM (2008) Topographic ERP analyses: a step-by-step tutorial review. Brain Topogr 20(4):249–264. doi:10.1007/s10548-008-0054-5

    Article  PubMed  Google Scholar 

  • Oechslin MS, Meyer M, Jancke L (2010) Absolute pitch–functional evidence of speech-relevant auditory acuity. Cereb Cortex 20(2):447–455. doi:10.1093/cercor/bhp113

    Article  PubMed  Google Scholar 

  • Ostroff JM, Martin BA, Boothroyd A (1998) Cortical evoked response to acoustic change within a syllable. Ear Hearing 19(4):290–297

    Article  CAS  Google Scholar 

  • Ott CG, Langer N, Oechslin M, Meyer M, Jancke L (2011) Processing of voiced and unvoiced acoustic stimuli in musicians. Front Psychol 2:195. doi:10.3389/fpsyg.2011.00195

    Article  PubMed  Google Scholar 

  • Pantev C, Oostenveld R, Engelien A, Ross B, Roberts LE, Hoke M (1998) Increased auditory cortical representation in musicians. Nature 392(6678):811–814. doi:10.1038/33918

    Article  PubMed  CAS  Google Scholar 

  • Pantev C, Engelien A, Candia V, Elbert T (2001a) Representational cortex in musicians. Plastic alterations in response to musical practice. Ann N Y Acad Sci 930:300–314

    Article  PubMed  CAS  Google Scholar 

  • Pantev C, Roberts LE, Schulz M, Engelien A, Ross B (2001b) Timbre-specific enhancement of auditory cortical representations in musicians. NeuroReport 12(1):169–174

    Article  PubMed  CAS  Google Scholar 

  • Patel AD (2011) Why would musical training benefit the neural encoding of speech? The OPERA hypothesis. Frontiers in Psychology 2. doi:10.3389/fpsyg.2011.00142

  • Perrin F, Pernier J, Bertrand O, Giard MH, Echallier JF (1987) Mapping of scalp potentials by surface spline interpolation. Electroen Clin Neuro 66(1):75–81

    Article  CAS  Google Scholar 

  • Picton TW, Hillyard SA (1974) Human auditory evoked potentials. II. Effects of attention. Electroencephalogr Clin Neurophysiol 36(2):191–199

    PubMed  CAS  Google Scholar 

  • Pratt H, Starr A, Michalewski HJ, Bleich N, Mittelman N (2007) The N1 complex to gaps in noise: effects of preceding noise duration and intensity. Clin Neurophysiol 118(5):1078–1087. doi:10.1016/j.clinph.2007.01.005

    Article  PubMed  Google Scholar 

  • Rajan R, Irvine DR, Wise LZ, Heil P (1993) Effect of unilateral partial cochlear lesions in adult cats on the representation of lesioned and unlesioned cochleas in primary auditory cortex. J Comp Neurol 338(1):17–49. doi:10.1002/cne.903380104

    Article  PubMed  CAS  Google Scholar 

  • Recanzone GH, Schreiner CE, Merzenich MM (1993) Plasticity in the frequency representation of primary auditory cortex following discrimination training in adult owl monkeys. J Neurosci 13(1):87–103

    PubMed  CAS  Google Scholar 

  • Schlaug G (2001) The brain of musicians. A model for functional and structural adaptation. Ann N Y Acad Sci 930:281–299

    Article  PubMed  CAS  Google Scholar 

  • Schlaug G, Jancke L, Huang Y, Steinmetz H (1995) In vivo evidence of structural brain asymmetry in musicians. Science 267(5198):699–701

    Article  PubMed  CAS  Google Scholar 

  • Schlaug G, Norton A, Overy K, Winner E (2005) Effects of music training on the child’s brain and cognitive development. Ann N Y Acad Sci 1060:219–230. doi:10.1196/annals.1360.015

    Article  PubMed  Google Scholar 

  • Schlegel F, Lehmann D, Faber PL, Milz P, Gianotti LR (2011) EEG microstates during resting represent personality differences. Brain Topogr. doi:10.1007/s10548-011-0189-7

    PubMed  Google Scholar 

  • Schneider P, Sluming V, Roberts N, Bleeck S, Rupp A (2005a) Structural, functional, and perceptual differences in Heschl’s gyrus and musical instrument preference. Ann N Y Acad Sci 1060:387–394. doi:10.1196/annals.1360.033

    Article  PubMed  Google Scholar 

  • Schneider P, Sluming V, Roberts N, Scherg M, Goebel R, Specht HJ, Dosch HG, Bleeck S, Stippich C, Rupp A (2005b) Structural and functional asymmetry of lateral Heschl’s gyrus reflects pitch perception preference. Nat Neurosci 8(9):1241–1247. doi:10.1038/nn1530

    Article  PubMed  CAS  Google Scholar 

  • Schön D, Francois C (2011) Musical expertise and statistical learning of musical and linguistic structures. Frontiers in Psychology 2. doi:10.3389/fpsyg.2011.00167

  • Schon D, Magne C, Besson M (2004) The music of speech: music training facilitates pitch processing in both music and language. Psychophysiology 41(3):341–349. doi:10.1111/1469-8986.00172.X

    Article  PubMed  Google Scholar 

  • Schwent VL, Hillyard SA (1975) Evoked potential correlates of selective attention with multi-channel auditory inputs. Electroencephalogr Clin Neurophysiol 38(2):131–138

    Article  PubMed  CAS  Google Scholar 

  • Shahin AJ (2011) Neurophysiological influence of musical training on speech perception. Front Psychol 2:126. doi:10.3389/fpsyg.2011.00126

    Article  PubMed  Google Scholar 

  • Shahin A, Bosnyak DJ, Trainor LJ, Roberts LE (2003) Enhancement of neuroplastic P2 and N1c auditory evoked potentials in musicians. J Neurosci 23(13):5545–5552

    PubMed  CAS  Google Scholar 

  • Shahin A, Roberts LE, Pantev C, Trainor LJ, Ross B (2005) Modulation of P2 auditory-evoked responses by the spectral complexity of musical sounds. NeuroReport 16(16):1781–1785. doi:00001756-200511070-00011

    Article  PubMed  Google Scholar 

  • Shannon RV, Zeng FG, Kamath V, Wygonski J, Ekelid M (1995) Speech recognition with primarily temporal cues. Science 270(5234):303–304

    Article  PubMed  CAS  Google Scholar 

  • Sharma A, Marsh CM, Dorman MF (2000) Relationship between N1 evoked potential morphology and the perception of voicing. J Acoust Soc Am 108(6):3030–3035

    Article  PubMed  CAS  Google Scholar 

  • Shen C, Smith ZM, Oxenham AJ, Delgutte B (2001) Auditory chimera demo. http://epl.meei.harvard.edu/~bard/chimeral

  • Sluming V, Brooks J, Howard M, Downes JJ, Roberts N (2007) Broca’s area supports enhanced visuospatial cognition in orchestral musicians. J Neurosci 27(14):3799–3806. doi:10.1523/Jneurosci.0147-07.2007

    Article  PubMed  CAS  Google Scholar 

  • Smith ZM, Delgutte B, Oxenham AJ (2002) Chimaeric sounds reveal dichotomies in auditory perception. Nature 416(6876):87–90. doi:10.1038/416087a

    Article  PubMed  CAS  Google Scholar 

  • Sturm W, Willmes K (1999) Verbaler Lerntest und Nonverbaler Lerntest (VLT/NVLT). Hogrefe, Göttingen

    Google Scholar 

  • Tibshirani R, Walther G (2005) Cluster validation by prediction strength. J Comput Graph Stat 14(3):511–528. doi:10.1198/106186005x59243

    Article  Google Scholar 

  • Trainor LJ, Shahin A, Roberts LE (2003) Effects of musical training on the auditory cortex in children. Ann N Y Acad Sci 999:506–513

    Article  PubMed  Google Scholar 

  • Vaughan HG Jr, Ritter W (1970) The sources of auditory evoked responses recorded from the human scalp. Electroencephalogr Clin Neurophysiol 28(4):360–367

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Sarah McCourt Meyer for comments on a previous version of the manuscript. This work was supported by Swiss National Foundation (320030-120661 and 4-62341-08).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürg Kühnis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kühnis, J., Elmer, S., Meyer, M. et al. Musicianship Boosts Perceptual Learning of Pseudoword-Chimeras: An Electrophysiological Approach. Brain Topogr 26, 110–125 (2013). https://doi.org/10.1007/s10548-012-0237-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10548-012-0237-y

Keywords

Navigation