Skip to main content
Log in

Imaging Brain Activity With Voltage- and Calcium-Sensitive Dyes

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

This paper presents three examples of imaging brain activity with voltage- or calcium-sensitive dyes and then discusses the methodological aspects of the measurements that are needed to achieve an optimal signal-to-noise ratio.

Internally injected voltage-sensitive dye can be used to monitor membrane potential in the dendrites of invertebrate and vertebrate neurons in in vitro preparations.

Both invertebrate and vertebrate ganglia can be bathed in voltage-sensitive dyes to stain all of the cell bodies in the preparation. These dyes can then be used to follow the spike activity of many neurons simultaneously while the preparations are generating behaviors.

Calcium-sensitive dyes that are internalized into olfactory receptor neurons in the nose will, after several days, be transported to the nerve terminals of these cells in the olfactory bulb. There they can be used to measure the input from the nose to the bulb.

Three kinds of noise are discussed. a. Shot noise from the random emission of photons from the preparation. b. Vibrational noise from external sources. c. Noise that occurs in the absence of light, the dark noise.

Three different parts of the light measuring apparatus are discussed: the light sources, the optics, and the cameras.

The major effort presently underway to improve the usefulness of optical recordings of brain activity are to find methods for staining individual cell types in the brain. Most of these efforts center around fluorescent protein sensors of activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adrian, E. (1953). Sensory messages and sensation. The response of the olfactory organ to different smells. Acta Physiol. Scand. 29:5–14.

    CAS  PubMed  Google Scholar 

  • Antic, S., Major, G., and Zecevic, D. (1999). Fast optical recording of membrane potential changes from dendrites of pyramidal neurons. J. Neurophysiol. 82:1615–1621.

    CAS  PubMed  Google Scholar 

  • Antic, S., Wuskell, J. P., Loew, L., and Zecevic, D. (2000). Functional profile of the giant metacerebral neuron of helix aspersa: Temporal and spatial dynamics of electrical activity in situ. J. Physiol. (Lond.) 527:55–69.

    Article  CAS  Google Scholar 

  • Antic, S., and Zecevic, D. (1995). Optical signals from neurons with internally applied voltage-sensitive dyes. J. Neurosci. 15:1392–1405.

    CAS  PubMed  Google Scholar 

  • Ataka, K., and Pieribone, V. A. (2002). A genetically-targetable fluorescent probe of channel gating with rapid kinetics. Biophys. J. 82:509–516.

    CAS  PubMed  Google Scholar 

  • Baker, B. J., Cohen, L. B., Pieribone, V., and Kosmidis, E. (2004). Expression of the GFP-voltage sensor SPARC in HEK 293 cells. Biophysical J. 86:425A–425A Part 2 Suppl. S.

    Google Scholar 

  • Ben-Oren, I., Peleg, G., Lewis, A., Minke, B., and Loew, L. (1996). Infrared nonlinear optical measurements of membrane potential in photoreceptor cells. Biophys. J. 71:1616–1620.

    CAS  PubMed  Google Scholar 

  • Berger, T., Larkum, M. E., and Luscher, H. R. (2001). High I(h) channel density in the distal apical dendrite of layer V pyramidal cells increases bidirectional attenuation of EPSPs. J. Neurophysiol. 85:855–868.

    CAS  PubMed  Google Scholar 

  • Bischofberger, J., and Jonas, P. (1997). Action potential propagation into the presynaptic dendrites of rat mitral cells. J. Physiol. (Lond.) 504:359–365.

    CAS  Google Scholar 

  • Blasdel, G. G., and Salama, G. (1986). Voltage-sensitive dyes reveal a modular organization in monkey striate cortex. Nature 321:579–585.

    CAS  PubMed  Google Scholar 

  • Bouevitch, O., Lewis, A., Pinevsky, I., Wuskell, J., and Loew, L. (1993). Probing membrane potential with nonlinear optics. Biophys. J. 65:672–679.

    CAS  PubMed  Google Scholar 

  • Boyle, M. B., and Cohen, L. B. (1980). Birefringence signals that monitor membrane potential in cell bodies of molluscan neurons. Fed. Proc. 39:2130.

    Google Scholar 

  • Braddick, H. J. J. (1960). Photoelectric photometry. Rep. Prog. Phys. 23:154–175.

    CAS  Google Scholar 

  • Bullen, A., Patel, S. S., and Saggau, P. (1997). High-speed, random-access fluorescence microscopy: I. High resolution optical recording with voltage-sensitive dyes and ion indicators. Biophys. J. 73:477–491.

    CAS  PubMed  Google Scholar 

  • Campagnola, P. J., Wei, M.-d., Lewis, A., and Loew, L. M. (1999). High resolution optical imaging of live cells by second harmonic generation. Biophys. J. 77:3341–3349.

    CAS  PubMed  Google Scholar 

  • Chen, W. R., Midtgaard, J., and Shepherd, G. M. (1997). Forward and backward propagation of dendritic impulses and their synaptic control in mitral cells. Science 278:463–467.

    CAS  PubMed  Google Scholar 

  • Christie, J. M., and Westbrook, G. L. (2003). Regulation of backpropagating action potentials in mitral cell lateral dendrites by A-type potassium currents. J. Neurophysiol. 89:2466–2472.

    CAS  PubMed  Google Scholar 

  • Cinelli, A. R., Neff, S. R., and Kauer, J. S. (1995). Salamander olfactory bulb neuronal activity observed by video rate, voltage-sensitive dye imaging. I. Characterization of the recording system. J. Neurophysiol. 73:2017–2032.

    CAS  PubMed  Google Scholar 

  • Cohen, L. B., and Lesher, S. (1986). Optical monitoring of membrane potential: Methods of multisite optical measurement. Soc. Gen. Physiol. Ser. 40:71–99.

    CAS  PubMed  Google Scholar 

  • Cohen, L. B., and Salzberg, B. M. (1978). Optical measurement of membrane potential. Rev. Physiol. Biochem. Pharmacol. 83:35–88.

    CAS  PubMed  Google Scholar 

  • Dainty, J. C. (1984). Laser Speckle and Related Phenomena, Springer-Verlag, New York.

    Google Scholar 

  • Davila, H. V., Cohen, L. B., Salzberg, B. M., and Shrivastav, B. B. (1974). Changes in ANS and TNS fluorescence in giant axons from Loligo. J. Membr. Biol. 15:29–46.

    CAS  PubMed  Google Scholar 

  • Davila, H. V., Salzberg, B. M., Cohen, L. B., and Waggoner, A. S. (1973). A large change in axon fluorescence that provides a promising method for measuring membrane potential. Nat. New Biol. 241:159–160.

    CAS  PubMed  Google Scholar 

  • Denk, W., Piston, D. W., and Webb, W. (1995). Two-photon molecular excitation in laser-scanning microscopy. In Pawley, J. W. (ed.), Handbook of Biological Confocal Microscopy, Plenum, New York, pp. 445–458.

    Google Scholar 

  • Ehrenberg, B., and Berezin, Y. (1984). Surface potential on purple membranes and its sidedness studied by resonance Raman dye probe. Biophys. J. 45:663–670.

    CAS  PubMed  Google Scholar 

  • Eilers, J., Callawaert, G., Armstrong, C., and Konnerth, A. (1995). Calcium signaling in a narrow somatic submembrane shell during synaptic activity in cerebellar Purkinje neurons. Proc. Natl. Acad. Sci. U.S.A. 92:10272–10276.

    CAS  PubMed  Google Scholar 

  • Friedrich, R. W., and Korsching, S. I. (1997). Combinatorial, and chemotropic odorant coding in the zebrafish olfactory bulb visualized by optical imaging. Neuron 18:737–752.

    CAS  PubMed  Google Scholar 

  • Fromherz, P., Dambacher, K. H., Ephardt, H., Lambacher, A., Muller, C. O., Neigl, R., Schaden, H., Schenk, O., and Vetter, T. (1991). Fluorescent dyes as probes of voltage transients in neuron membranes: Progress report. Ber. Bunsenges. Phys. Chem. 95:1333–1345.

    CAS  Google Scholar 

  • Gonzalez, J. E., and Tsien, R. Y. (1995). Voltage sensing by fluorescence energy transfer in single cells. Biophys. J. 69:1272–1280.

    CAS  PubMed  Google Scholar 

  • Grinvald, A., Frostig, R. D., Lieke, E., and Hildesheim, R. (1988). Optical imaging of neuronal activity. Physiol. Rev. 68:1285–1366.

    CAS  PubMed  Google Scholar 

  • Grinvald, A., Hildesheim, R., Farber, I. C., and Anglister, L. (1982). Improved fluorescent probes for the measurement of rapid changes in membrane potential. Biophys. J. 39:301–308.

    CAS  PubMed  Google Scholar 

  • Grinvald, A., Salzberg, B. M., Lev-Ram, V., and Hildesheim, R. (1987). Optical recording of synaptic potentials from processes of single neurons using intracellular potentiometric dyes. Biophys. J. 51:643–651.

    CAS  PubMed  Google Scholar 

  • Gross, E., Bedlack, R. S., and Loew, L. M. (1994). Dual-wavelength ratiometric fluorescence measurements of the membrane dipole potential. Biophys. J. 67:208–216.

    CAS  PubMed  Google Scholar 

  • Gupta, R. K., Salzberg, B. M., Grinvald, A., Cohen, L. B., Kamino, K., Lesher, S., Boyle, M. B., Waggoner, A. S., and Wang, C. H. (1981). Improvements in optical methods for measuring rapid changes in membrane potential. J. Membr. Biol. 58:123–137.

    CAS  PubMed  Google Scholar 

  • Hamer, F. M. (1964). The Cyanine Dyes and Related Compounds, Wiley, New York.

    Google Scholar 

  • Hickie, C., Wenner, P., O’Donovan, M., Tsau, Y., Fang, J., and Cohen, L. B. (1996). Optical monitoring of activity from individual and identified populations of neurons retrogradely labeled with voltage-sensitive dyes. Abstr. Soc. Neurosci. 22:321.

    Google Scholar 

  • Hirota, A., Sato, K., Momose-Sato, Y., Sakai, T., and Kamino, K. (1995). A new simultaneous 1020-site optical recording system for monitoring neural activity using voltage-sensitive dyes. J. Neurosci. Methods 56:187–194.

    CAS  PubMed  Google Scholar 

  • Iijima, T., Ichikawa, M., and Matsumoto, G. (1989). Optical monitoring of LTP and related phenomena. Abstr. Soc. Neurosci. 15:398.

    Google Scholar 

  • Inoue, S. (1986). Video Microscopy, Plenum, New York. p. 128.

    Google Scholar 

  • Kasowski, H. J., Kim, H., and Greer, C. A. (1999). Compartmental organization of the olfactory bulb glomerulus. J. Comp. Neurol. 407:261–274.

    CAS  PubMed  Google Scholar 

  • Kauer, J. (1991). Contributions of topography and parallel processing to odor coding in the vertebrate olfactory pathway. Trends Neurosci. 14:79–85.

    CAS  PubMed  Google Scholar 

  • Kazan, B., and Knoll, M. (1968). Electronic Image Storage, Academic, New York.

    Google Scholar 

  • Kleinfeld, D., and Delaney, K. R. (1996). Distributed representation of vibrissa movement in the upper layers of somatosensory cortex revealed with voltage-sensitive dyes. J. Comp. Neurol. 375:89–108.

    CAS  PubMed  Google Scholar 

  • Kreitzer, A. C., Gee, K. R., Archer, E. A., and Regehr, W. G. (2000). Monitoring presynaptic calcium dynamics in projection fibers by in vivo loading of a novel calcium indicator. Neuron 27:25–32.

    CAS  PubMed  Google Scholar 

  • Kupfermann, I., Pinsker, H., Castellucci, V., and Kandel, E. R. (1971). Central and peripheral control of gill movements in Aplysia. Science 174(1):252–256.

    Google Scholar 

  • Lam, Y.-w., Lawrence, B., Cohen, M. W., and Michal, R. Z. (2000). Odors elicit three different oscillations in the turtle olfactory bulb. J. Neurosci. 20:749–762.

    CAS  PubMed  Google Scholar 

  • Loew, L. M. (1993). Confocal microscopy of potentiometric fluorescent dyes. Methods Cell Biol. 38:195–209.

    CAS  PubMed  Google Scholar 

  • Loew, L. M., Campagnola, P., Lewis, A., and Wuskell, J. P. (2002). Confocal and non-linear optical imaging of potentiometric dyes. Methods Cell Biol. 70:429–452.

    CAS  PubMed  Google Scholar 

  • Loew, L. M., Cohen, L. B., Dix, J., Fluhler, E. N., Montana, V., Salama, G., and Wu, J. Y. (1992). A napthyl analog of the aminostyryl pyridinium class of potentiometric membrane dyes shows consistent sensitivity in a variety of tissue, cell, and model membrane preparations. J. Membr. Biol. 130:1–10.

    CAS  PubMed  Google Scholar 

  • Loew, L. M., Cohen, L. B., Salzberg, B. M., Obaid, A. L., and Bezanilla, F. (1985). Charge-shift probes of membrane potential. Characterization of aminostyrylpyridinium dyes on the squid giant axon. Biophys. J. 47:71–77.

    CAS  PubMed  Google Scholar 

  • London, J. A., Zecevic, D., and Cohen, L. B. (1987). Simultaneous optical recording of activity from many neurons during feeding in Navanax. J. Neurosci. 7:649–661.

    CAS  PubMed  Google Scholar 

  • Magee, J. C., Christofi, G., Miyakawa, H., Christie, B., Lasser-Ross, N., and Johnston, D. (1995). Subthreshold synaptic activation of voltage-gated calcium channels mediate a localized calcium influx into dendrites of hippocampal pyramidal neurons. J. Neurophysiol. 74:1335–1342.

    CAS  PubMed  Google Scholar 

  • Magee, J. C., and Johnston, D. (1995). Synaptic activation of voltage-gated channels in the dendrites of hippocampal pyramidal neurons. Science 268:301–304.

    CAS  PubMed  Google Scholar 

  • Malmstadt, H. V., Enke, C. G., Crouch, S. R., and Harlick, G. (1974). Electronic Measurements for Scientists, Benjamin, Menlo Park, CA.

    Google Scholar 

  • Malnic, B., Hirono, J., Sato, T., and Buck, L. (1999). Combinatorial receptor codes for odors. Cell 96:713–723.

    CAS  PubMed  Google Scholar 

  • Momose-Sato, Y., Sato, K., Sakai, T., Hirota, A., Matsutani, K., and Kamino, K. (1995). Evaluation of optimal voltage-sensitive dyes for optical measurement of embryonic neural activity. J. Membr. Biol. 144:167–176.

    CAS  PubMed  Google Scholar 

  • Nakashima, M., Yamada, S., Shiono, S., Maeda, M., and Sato, F. (1992). 448-detector optical recording system: Development and application to Aplysia gill-withdrawal reflex. IEEE Trans. Biomed. Eng. 39:26–36.

    CAS  PubMed  Google Scholar 

  • Nirenberg, S., and Cepko, C. (1993). Targeted ablation of diverse cell classes in the nervous system in vivo. J. Neurosci. 13:3238–3251.

    CAS  PubMed  Google Scholar 

  • Obaid, A. L., Koyano, T., Lindstrom, J., Sakai, T., and Salzberg, B. M. (1999). Spatiotemporal patterns of activity in an intact mammalian network with single-cell resolution: Optical studies of nicotinic activity in an enteric plexus. J. Neurosci. 19:3073–3093.

    CAS  PubMed  Google Scholar 

  • O’Donovan, M. J., Ho, S., Sholomenko, G., and Yee, W. (1993). Real-time imaging of neurons retrogradely and anterogradely labeled with calcium sensitive dyes. J. Neurosci. Methods 46:91–106.

    CAS  PubMed  Google Scholar 

  • Orbach, H. S., and Cohen, L. B. (1983). Optical monitoring of activity from many areas of the in vitro and in vivo salamander olfactory bulb: A new method for studying functional organization in the vertebrate central nervous system. J. Neurosci. 3:2251–2262.

    CAS  PubMed  Google Scholar 

  • Orbach, H. S., Cohen, L. B., and Grinvald, A. (1985). Optical mapping of electrical activity in rat somatosensory and visual cortex. J. Neurosci. 5:1886–1895.

    CAS  PubMed  Google Scholar 

  • Petran, M., and Hadravsky, M. (1966). Czechoslovakian Patent 7720.

  • Rohr, S., and Salzberg, B. M. (1994). Multiple site optical recording of transmembrane voltage in patterned growth heart cell cultures: Assessing electrical behavior, with microsecond resolution, on a cellular and subcellular scale. Biophys. J. 67:1301–1315.

    CAS  PubMed  Google Scholar 

  • Ross, W. N., Salzberg, B. M., Cohen, L. B., Grinvald, A., Davila, H. V., Waggoner, A. S., and Wang, C. H. (1977). Changes in absorption, fluorescence, dichroism, and birefringence in stained giant axons: Optical measurement of membrane potential. J. Membr. Biol. 33:141–183.

    CAS  PubMed  Google Scholar 

  • Rubin, B., and Katz, L. (1999). Optical imaging of odorant representations in the mammalian olfactory bulb. Neuron 23:499–511.

    CAS  PubMed  Google Scholar 

  • Sakai, R., Repunte-Canonigo, V., Raj, C. D., and Knopfel, T. (2001). Design and characterization of a DNA-encoded, voltage-sensitive fluorescent protein. Eur. J. Neurosci. 13:2314–2318.

    CAS  PubMed  Google Scholar 

  • Salzberg, B. M. (1983). Optical recording of electrical activity in neurons using molecular probes. In Barker, J. L., and McKelvy, J. F. (eds.), Current Methods in Cellular Neurobiology, Wiley, New York, pp. 139–187.

    Google Scholar 

  • Salzberg, B. M., Davila, H. V., and Cohen, L. B. (1973). Optical recording of impulses in individual neurones of an invertebrate central nervous system. Nature 246:508–509.

    CAS  PubMed  Google Scholar 

  • Salzberg, B. M., Grinvald, A., Cohen, L. B., Davila, H. V., and Ross, W. N. (1977). Optical recording of neuronal activity in an invertebrate central nervous system: Simultaneous monitoring of several neurons. J. Neurophysiol. 40:1281–1291.

    CAS  PubMed  Google Scholar 

  • Shaw, R. (1979). Photographic detectors. Appl. Opt. Opt. Eng. 7:121–154.

    CAS  Google Scholar 

  • Siegel, M. S., and Isacoff, E. Y. (1997). A genetically encoded optical probe of membrane voltage. Neuron 19:735–741.

    CAS  PubMed  Google Scholar 

  • Spruston, N., Schiller, Y., Stuart, G., and Sakmann, B. (1995). Activity-dependent action potential invasion and calcium influx into hippocampal CA1 dendrites. Science 268:297–300.

    CAS  PubMed  Google Scholar 

  • Stuart, G. J., and Sakmann, B. (1994). Active propagation of somatic action potentials into neocortical pyramidal cell dendrites. Nature 367:69–72.

    CAS  PubMed  Google Scholar 

  • Stuart, G. J., and Hausser, M. (2001). Dendritic coincidence detection of EPSPs and action potentials. Nat. Neurosci. 4:63–71.

    CAS  PubMed  Google Scholar 

  • Tank, D., and Ahmed, Z. (1985). Multiple-site monitoring of activity in cultured neurons. Biophys. J. 47:476A.

    Google Scholar 

  • Tsau, Y., Wu, J. Y., Hopp, H. P., Cohen, L. B., Schiminovich, D., and Falk, C. X. (1994). Distributed aspects of the response to siphon touch in Aplysia: Spread of stimulus information and cross-correlation analysis. J. Neurosci. 14:4167–4184.

    CAS  PubMed  Google Scholar 

  • Tsau, Y., Wenner, P., O’Donovan, M. J., Cohen, L. B., Loew, L. M., and Wuskell, J. P. (1996). Dye screening and signal-to-noise ratio for retrogradely transported voltage-sensitive dyes. J. Neurosci. Methods 70:121–129.

    CAS  PubMed  Google Scholar 

  • Vassar, R., Chao, S., Sitcheran, R., Nunez, J., Vosshall, L., and Axel, R. (1994). Topographic organization of sensory projections to the olfactory bulb. Cell 79:981–991.

    CAS  PubMed  Google Scholar 

  • Vučinić, D., Cohen, L. B., and Kosmidis, E. K. (in preparation). Presynaptic centre-surround inhibition shapes sensory input to the mouse olfactory bulb.

  • Wachowiak, M., and Cohen, L. B. (1999). Presynaptic inhibition of primary olfactory afferents mediated by different mechanisms in the lobster and turtle. J. Neurosci. 19:8808–8817.

    CAS  PubMed  Google Scholar 

  • Wachowiak, M., Cohen, L. B., and Zochowski, M. (2002). Distributed and concentration invariant spatial representations of odorants by receptor neuron input to the turtle olfactory bulb. J. Neurophysiol. 87:1035–1045.

    PubMed  Google Scholar 

  • Wachowiak, M., and Cohen, L. B. (2001). Representation of odorants by receptor neuron input to the mouse olfactory bulb. Neuron 32:725–737.

    Google Scholar 

  • Waggoner, A. S., and Grinvald, A. (1977). Mechanisms of rapid optical changes of potential sensitive dyes. Annu. N.Y. Acad. Sci. 303:217–241.

    CAS  Google Scholar 

  • Wu, J. Y., and Cohen, L. B. (1993). Fast multisite optical measurements of membrance potential. In Fluorescent and Luminescent Probes for Biological Activity., W. T. Mason ed., Academic Press, London, 389–404.

    Google Scholar 

  • Wu, J. Y., Tsau, Y., Hopp, H. P., Cohen, L. B., Tang, A. C., and Falk, C. X. (1994). Consistency in nervous systems: Trial-to-trial and animal-to-animal variations in the response to repeated application of a sensory stimulus in Aplysia. J. Neurosci. 14:1366–1384.

    CAS  PubMed  Google Scholar 

  • Xu, F., Kida, I., Hyder, F., and Shulman, R. (2000). Assessment and discrimination of odor stimuli in rat olfactory bulb by dynamic functional MRI. Proc. Natl. Acad. Sci. U.S.A. 97:10601–10606.

    CAS  PubMed  Google Scholar 

  • Yuste, R., and Denk, W. (1995). Dendritic spines as basic functional units of neuronal integration. Nature 375:682–684.

    CAS  PubMed  Google Scholar 

  • Zecevic, D. (1996). Multiple spike-initiation zones in single neurons revealed by voltage-sensitive dyes. Nature 381:322–325.

    CAS  PubMed  Google Scholar 

  • Zecevic, D., and Antic, S. (1998). Fast optical measurement of membrane potential changes at multiple sites on an individual nerve cell. Histochem J. 30:197–216.

    CAS  PubMed  Google Scholar 

  • Zecevic, D., Wu, J. Y., Cohen, L. B., London, J. A., Hopp, H. P., and Falk, C. X. (1989). Hundreds of neurons in the Aplysia abdominal ganglion are active during the gill-withdrawal reflex. J. Neurosci. 9:3681–3689.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bradley J. Baker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baker, B.J., Kosmidis, E.K., Vucinic, D. et al. Imaging Brain Activity With Voltage- and Calcium-Sensitive Dyes. Cell Mol Neurobiol 25, 245–282 (2005). https://doi.org/10.1007/s10571-005-3059-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-005-3059-6

Keywords

Navigation