Skip to main content

Advertisement

Log in

Effects of Oxygen Concentration on the Proliferation and Differentiation of Mouse Neural Stem Cells In Vitro

  • Original Paper
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Background and purpose Cerebral ischemia is known to elicit the activation of neural stem cells (NSCs); however its mechanism is not fully determined. Although oxygen concentration is known to mediate many ischemic actions, there has been little attention given to the role of pathological oxygen changes under cerebral ischemia on the activation of NSCs. We investigated the effects of various oxygen concentrations on mouse neural stem cells in vitro. Methods NSCs were cultured from the ganglionic eminence of fetal ICR mice on embryonic day 15.5 using a neurosphere method. The effects of oxygen concentrations on proliferation, differentiation, and cell death of NSCs were evaluated by bromodeoxyuridine (BrdU) incorporation, immunocytochemistry, and TUNEL assay, respectively. Results The highest proliferation and the neuronal differentiation of the NSCs were observed in 2% oxygen, which yielded significantly higher proportions of both BrdU-labeled cells and Tuj1-positive cells when compared with 20% and 4% oxygen. On the other hand, the differentiation to the astrocytes was not affected by oxygen concentrations, except in the case of anoxia (0% oxygen). The cell death of the NSCs increased in lower oxygen conditions and peaked at anoxia. Furthermore, the switching of the neuronal subtype differentiation from GABA-positive to glutamate-positive neurons was observed in lower oxygen conditions. Conclusions These findings raise the possibility that reduced oxygen levels occurring with cerebral ischemia enhance NSC proliferation and neural differentiation, and that mild hypoxia (2% oxygen), which is known to occur in the ischemic penumbra, is suitable for abundant neuronal differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arvidsson A, Collin T, Kirik D, Kokaia Z, Lindvall O (2002) Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med 8:963–970

    Article  PubMed  CAS  Google Scholar 

  • Astrup J, Siesjo BK, Symon L (1981) Thresholds in cerebral ischemia—the ischemic penumbra. Stroke 12:723–725

    PubMed  CAS  Google Scholar 

  • Brusselmans K, Bono F, Maxwell P, Dor Y, Dewerchin M, Collen D, Herbert JM, Carmeliet P (2001) Hypoxia-inducible factor-2alpha (HIF-2alpha) is involved in the apoptotic response to hypoglycemia but not to hypoxia. J Biol Chem 276:39192–39196

    Article  PubMed  CAS  Google Scholar 

  • Burke RE, Kenyon N (1991) The effect of neonatal hypoxia-ischemia on striatal cholinergic neurophil: a quantitative morphologic analysis. Exp Neurol 113:63–73

    Article  PubMed  CAS  Google Scholar 

  • Daadi MM (2002) In vitro assays for neural stem cell differentiation. Meth Mol Biol 198:149–155

    Google Scholar 

  • Fisher M (1997) Characterizing the target of acute stroke therapy. Stroke 28:866–872

    PubMed  CAS  Google Scholar 

  • George S, Scotter J, Dean JM, Bennet L, Waldvogel HJ, Guan J, Faull RL, Gunn AJ (2007) Induced cerebral hypothermia reduces post-hypoxic loss of phenotypic striatal neurons in preterm fetal sheep. Exp Neurol 203:137–147. Epub 2006 Sep 2007

    Article  PubMed  CAS  Google Scholar 

  • Harris RJ, Richards PG, Symon L, Habib AH, Rosenstein J (1987) pH, K+, and PO2 of the extracellular space during ischaemia of primate cerebral cortex. J Cereb Blood Flow Metab 7:599–604

    PubMed  CAS  Google Scholar 

  • Horie N, Moriya T, Mitome M, Kitagawa N, Nagata I, Shinohara K (2004) Lowered glucose suppressed the proliferation and increased the differentiation of murine neural stem cells in vitro. FEBS Lett 571:237–242

    Article  PubMed  CAS  Google Scholar 

  • Ishimaru H, Takahashi A, Ikarashi Y, Maruyama Y (1995) Immunohistochemical and neurochemical studies of hippocampal cholinergic neurones after ischaemia. Neuroreport 6:557–560

    Article  PubMed  CAS  Google Scholar 

  • Jin K, Mao XO, Sun Y, Xie L, Jin L, Nishi E, Klagsbrun M, Greenberg DA (2002) Heparin-binding epidermal growth factor-like growth factor: hypoxia-inducible expression in vitro and stimulation of neurogenesis in vitro and in vivo. J Neurosci 22:5365–5373

    PubMed  CAS  Google Scholar 

  • Kee NJ, Preston E, Wojtowicz JM (2001) Enhanced neurogenesis after transient global ischemia in the dentate gyrus of the rat. Exp Brain Res 136:313–320

    Article  PubMed  CAS  Google Scholar 

  • Knopfel T, Tozzi A, Pisani A, Calabresi P, Bernardi G (1998) Hypoxic and hypoglycaemic changes of intracellular pH in cerebral cortical pyramidal neurones. Neuroreport 9:1447–1450

    PubMed  CAS  Google Scholar 

  • Liu J, Solway K, Messing RO, Sharp FR (1998) Increased neurogenesis in the dentate gyrus after transient global ischemia in gerbils. J Neurosci 18:7768–7778

    PubMed  CAS  Google Scholar 

  • Liu S, Shi H, Liu W, Furuichi T, Timmins GS, Liu KJ (2004) Interstitial pO2 in ischemic penumbra and core are differentially affected following transient focal cerebral ischemia in rats. J Cereb Blood Flow Metab 24:343–349

    Article  PubMed  CAS  Google Scholar 

  • Loidl CF, Herrera-Marschitz M, Andersson K, You ZB, Goiny M, O’Connor WT, Silveira R, Rawal R, Bjelke B, Chen Y et al (1994) Long-term effects of perinatal asphyxia on basal ganglia neurotransmitter systems studied with microdialysis in rat. Neurosci Lett 175:9–12

    Article  PubMed  CAS  Google Scholar 

  • Mitome M, Low HP, van den Pol A, Nunnari JJ, Wolf MK, Billings-Gagliardi S, Schwartz WJ (2001) Towards the reconstruction of central nervous system white matter using neural precursor cells. Brain 124:2147–2161

    Article  PubMed  CAS  Google Scholar 

  • Morrison SJ, Csete M, Groves AK, Melega W, Wold B, Anderson DJ (2000) Culture in reduced levels of oxygen promotes clonogenic sympathoadrenal differentiation by isolated neural crest stem cells. J Neurosci 20:7370–7376

    PubMed  CAS  Google Scholar 

  • Nakatomi H, Kuriu T, Okabe S, Yamamoto S, Hatano O, Kawahara N, Tamura A, Kirino T, Nakafuku M (2002) Regeneration of hippocampal pyramidal neurons after ischemic brain injury by recruitment of endogenous neural progenitors. Cell 110:429–441

    Article  PubMed  CAS  Google Scholar 

  • Ohta K, Iwai M, Sato K, Omori N, Nagano I, Shoji M, Abe K (2003) Dissociative increase of oligodendrocyte progenitor cells between young and aged rats after transient cerebral ischemia. Neurosci Lett 335:159–162

    Article  PubMed  CAS  Google Scholar 

  • Pulsinelli WA, Brierley JB, Plum F (1982) Temporal profile of neuronal damage in a model of transient forebrain ischemia. Ann Neurol 11:491–498

    Article  PubMed  CAS  Google Scholar 

  • Reynolds BA, Tetzlaff W, Weiss S (1992) A multipotent EGF-responsive striatal embryonic progenitor cell produces neurons and astrocytes. J Neurosci 12:4565–4574

    PubMed  CAS  Google Scholar 

  • Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255:1707–1710

    Article  PubMed  CAS  Google Scholar 

  • Sato K, Hayashi T, Sasaki C, Iwai M, Li F, Manabe Y, Seki T, Abe K (2001) Temporal and spatial differences of PSA-NCAM expression between young-adult and aged rats in normal and ischemic brains. Brain Res 922:135–139

    Article  PubMed  CAS  Google Scholar 

  • Shingo T, Sorokan ST, Shimazaki T, Weiss S (2001) Erythropoietin regulates the in vitro and in vivo production of neuronal progenitors by mammalian forebrain neural stem cells. J Neurosci 21:9733–9743

    PubMed  CAS  Google Scholar 

  • Siesjo BK (1992) Pathophysiology and treatment of focal cerebral ischemia. Part I: Pathophysiology. J Neurosurg 77:169–184

    Article  PubMed  CAS  Google Scholar 

  • Smith ML, Auer RN, Siesjo BK (1984) The density and distribution of ischemic brain injury in the rat following 2–10 min of forebrain ischemia. Acta Neuropathol (Berl) 64(4):319–332

    Article  CAS  Google Scholar 

  • Storch A, Paul G, Csete M, Boehm BO, Carvey PM, Kupsch A, Schwarz J (2001) Long-term proliferation and dopaminergic differentiation of human mesencephalic neural precursor cells. Exp Neurol 170:317–325

    Article  PubMed  CAS  Google Scholar 

  • Studer L, Csete M, Lee SH, Kabbani N, Walikonis J, Wold B, McKay R (2000) Enhanced proliferation, survival, and dopaminergic differentiation of CNS precursors in lowered oxygen. J Neurosci 20:7377–7383

    PubMed  CAS  Google Scholar 

  • Takagi Y, Nozaki K, Takahashi J, Yodoi J, Ishikawa M, Hashimoto N (1999) Proliferation of neuronal precursor cells in the dentate gyrus is accelerated after transient forebrain ischemia in mice. Brain Res 831:283–287

    Article  PubMed  CAS  Google Scholar 

  • Yagita Y, Kitagawa K, Ohtsuki T, Takasawa K, Miyata T, Okano H, Hori M, Matsumoto M (2001) Neurogenesis by progenitor cells in the ischemic adult rat hippocampus. Stroke 32:1890–1896

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Anne-Lise Maag and William Slikker (Department of Neurosurgery, Stanford University) for editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nobutaka Horie or Kazuyuki Shinohara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horie, N., So, K., Moriya, T. et al. Effects of Oxygen Concentration on the Proliferation and Differentiation of Mouse Neural Stem Cells In Vitro. Cell Mol Neurobiol 28, 833–845 (2008). https://doi.org/10.1007/s10571-007-9237-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-007-9237-y

Keywords

Navigation