Skip to main content

Advertisement

Log in

Investigating Tonic Wnt Signaling Throughout the Adult CNS and in the Hippocampal Neurogenic Niche of BatGal and Ins-TopGal Mice

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Wnt/β-catenin signaling has a well-established role in the development of the central nervous system (CNS), and recent evidence is extending this role to include the regulation of adult hippocampal function, including neurogenesis within the dentate gyrus. While the neuroanatomical expression pattern of many canonical Wnt signaling components have been investigated, the sites of signal integration and functional downstream β-catenin activation remain comparatively less characterized in the adult CNS. Using two independent transgenic β-catenin-activated LacZ reporter mouse lines (BatGal and ins-TopGal), we demonstrate that Wnt/β-catenin signaling is active in discrete regions of the adult mouse CNS. Intriguingly, BatGal mice exhibit a broad pattern of reporter expression in the CNS, while expression in ins-TopGal mice is more restricted. Further investigation of these two lines reveals temporal differences in β-catenin-activated reporter expression during neurogenesis within the adult hippocampus. Ins-TopGal mice display peaks of Wnt/β-catenin-activated reporter expression during early and later stages of neurogenesis suggesting Wnt/β-catenin signaling plays an important role during both progenitor cell amplification as well as neuronal maturation, integration, and/or maintenance; however, results from BatGal mice are not as convincing. Thus our data using ins-TopGal mice are consistent with the idea that Wnt signaling plays diverse roles during adult hippocampal neurogenesis and support the idea that multiple transgenic reporter lines must be rigorously compared during scientific investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alonso L, Fuchs E (2003) Stem cells in the skin: waste not, Wnt not. Genes Dev 17(10):1189–1200. doi:10.1101/gad.1086903

    Article  PubMed  CAS  Google Scholar 

  • Avilion AA, Nicolis SK, Pevny LH, Perez L, Vivian N, Lovell-Badge R (2003) Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev 17(1):126–140. doi:10.1101/gad.224503

    Article  PubMed  CAS  Google Scholar 

  • Baimbridge KG, Celio MR, Rogers JH (1992) Calcium-binding proteins in the nervous system. Trends Neurosci 15(8):303–308

    Article  PubMed  CAS  Google Scholar 

  • Barolo S (2006) Transgenic Wnt/TCF pathway reporters: all you need is Lef? Oncogene 25(57):7505–7511. doi:10.1038/sj.onc.1210057

    Article  PubMed  CAS  Google Scholar 

  • Brandt MD, Jessberger S, Steiner B, Kronenberg G, Reuter K, Bick-Sander A, von der Behrens W, Kempermann G (2003) Transient calretinin expression defines early postmitotic step of neuronal differentiation in adult hippocampal neurogenesis of mice. Mol Cell Neurosci 24(3):603–613

    Article  PubMed  CAS  Google Scholar 

  • Castelo-Branco G, Rawal N, Arenas E (2004) GSK-3beta inhibition/beta-catenin stabilization in ventral midbrain precursors increases differentiation into dopamine neurons. J Cell Sci 117(Pt 24):5731–5737. doi:10.1242/jcs.01505

    Article  PubMed  CAS  Google Scholar 

  • Chenn A, Walsh CA (2002) Regulation of cerebral cortical size by control of cell cycle exit in neural precursors. Science 297(5580):365–369. doi:10.1126/science.1074192

    Article  PubMed  CAS  Google Scholar 

  • Couillard-Despres S, Winner B, Schaubeck S, Aigner R, Vroemen M, Weidner N, Bogdahn U, Winkler J, Kuhn HG, Aigner L (2005) Doublecortin expression levels in adult brain reflect neurogenesis. Eur J Neurosci 21(1):1–14. doi:10.1111/j.1460-9568.2004.03813.x

    Article  PubMed  Google Scholar 

  • Currier N, Chea K, Hlavacova M, Sussman DJ, Seldin DC, Dominguez I (2010) Dynamic expression of a LEF-EGFP Wnt reporter in mouse development and cancer. Genesis 48(3):183–194. doi:10.1002/dvg.20604

    PubMed  CAS  Google Scholar 

  • DasGupta R, Fuchs E (1999) Multiple roles for activated LEF/TCF transcription complexes during hair follicle development and differentiation. Development 126(20):4557–4568

    PubMed  CAS  Google Scholar 

  • David DJ, Samuels BA, Rainer Q, Wang JW, Marsteller D, Mendez I, Drew M, Craig DA, Guiard BP, Guilloux JP, Artymyshyn RP, Gardier AM, Gerald C, Antonijevic IA, Leonardo ED, Hen R (2009) Neurogenesis-dependent and -independent effects of fluoxetine in an animal model of anxiety/depression. Neuron 62(4):479–493. doi:10.1016/j.neuron.2009.04.017

    Article  PubMed  CAS  Google Scholar 

  • Duan X, Kang E, Liu CY, Ming GL, Song H (2008) Development of neural stem cell in the adult brain. Curr Opin Neurobiol 18(1):108–115. doi:10.1016/j.conb.2008.04.001

    Article  PubMed  CAS  Google Scholar 

  • Encinas JM, Vaahtokari A, Enikolopov G (2006) Fluoxetine targets early progenitor cells in the adult brain. Proc Natl Acad Sci USA 103(21):8233–8238. doi:10.1073/pnas.0601992103

    Article  PubMed  CAS  Google Scholar 

  • Filali M, Cheng N, Abbott D, Leontiev V, Engelhardt JF (2002) Wnt-3A/beta-catenin signaling induces transcription from the LEF-1 promoter. J Biol Chem 277(36):33398–33410. doi:10.1074/jbc.M107977200

    Article  PubMed  CAS  Google Scholar 

  • Franklin KBJ, Paxinos G (2008) The mouse brain in stereotaxic coordinates, 3rd edn. Elsevier Academic Press, New York

    Google Scholar 

  • Gao X, Arlotta P, Macklis JD, Chen J (2007) Conditional knock-out of beta-catenin in postnatal-born dentate gyrus granule neurons results in dendritic malformation. J Neurosci 27(52):14317–14325. doi:10.1523/JNEUROSCI.3206-07.2007

    Article  PubMed  CAS  Google Scholar 

  • Gould TD, Picchini AM, Einat H, Manji HK (2006) Targeting glycogen synthase kinase-3 in the CNS: implications for the development of new treatments for mood disorders. Curr Drug Targets 7(11):1399–1409

    PubMed  CAS  Google Scholar 

  • Gould TD, Einat H, O’Donnell KC, Picchini AM, Schloesser RJ, Manji HK (2007) Beta-catenin overexpression in the mouse brain phenocopies lithium-sensitive behaviors. Neuropsychopharmacology 32(10):2173–2183. doi:10.1038/sj.npp.1301338

    Article  PubMed  CAS  Google Scholar 

  • Gregorieff A, Clevers H (2005) Wnt signaling in the intestinal epithelium: from endoderm to cancer. Genes Dev 19(8):877–890. doi:10.1101/gad.1295405

    Article  PubMed  CAS  Google Scholar 

  • Gross CG (2000) Neurogenesis in the adult brain: death of a dogma. Nat Rev Neurosci 1(1):67–73. doi:10.1038/35036235,10.1016/j.bbr.2008.10.039

    Article  PubMed  CAS  Google Scholar 

  • Hirabayashi Y, Itoh Y, Tabata H, Nakajima K, Akiyama T, Masuyama N, Gotoh Y (2004) The Wnt/beta-catenin pathway directs neuronal differentiation of cortical neural precursor cells. Development 131(12):2791–2801. doi:10.1242/dev.01165

    Article  PubMed  CAS  Google Scholar 

  • Hodge RD, Kowalczyk TD, Wolf SA, Encinas JM, Rippey C, Enikolopov G, Kempermann G, Hevner RF (2008) Intermediate progenitors in adult hippocampal neurogenesis: Tbr2 expression and coordinate regulation of neuronal output. J Neurosci 28(14):3707–3717. doi:10.1523/JNEUROSCI.4280-07.2008

    Article  PubMed  CAS  Google Scholar 

  • Hsu SC, Galceran J, Grosschedl R (1998) Modulation of transcriptional regulation by LEF-1 in response to Wnt-1 signaling and association with beta-catenin. Mol Cell Biol 18(8):4807–4818

    PubMed  CAS  Google Scholar 

  • Jessberger S, Clark RE, Broadbent NJ, Clemenson GD Jr, Consiglio A, Lie DC, Squire LR, Gage FH (2009) Dentate gyrus-specific knockdown of adult neurogenesis impairs spatial and object recognition memory in adult rats. Learn Mem 16(2):147–154. doi:10.1101/lm.1172609

    Article  PubMed  Google Scholar 

  • Jho EH, Zhang T, Domon C, Joo CK, Freund JN, Costantini F (2002) Wnt/beta-catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway. Mol Cell Biol 22(4):1172–1183

    Article  PubMed  CAS  Google Scholar 

  • Karalay O, Doberauer K, Vadodaria KC, Knobloch M, Berti L, Miquelajauregui A, Schwark M, Jagasia R, Taketo MM, Tarabykin V, Lie DC, Jessberger S (2011) Prospero-related homeobox 1 gene (Prox1) is regulated by canonical Wnt signaling and has a stage-specific role in adult hippocampal neurogenesis. Proc Natl Acad Sci USA 108(14):5807–5812. doi:10.1073/pnas.1013456108

    Article  PubMed  CAS  Google Scholar 

  • Klassen MP, Shen K (2007) Wnt signaling positions neuromuscular connectivity by inhibiting synapse formation in C. elegans. Cell 130(4):704–716. doi:10.1016/j.cell.2007.06.046

    Article  PubMed  CAS  Google Scholar 

  • Kuwabara T, Hsieh J, Muotri A, Yeo G, Warashina M, Lie DC, Moore L, Nakashima K, Asashima M, Gage FH (2009) Wnt-mediated activation of NeuroD1 and retro-elements during adult neurogenesis. Nat Neurosci 12(9):1097–1105. doi:10.1038/nn.2360

    Article  PubMed  CAS  Google Scholar 

  • Labbe E, Letamendia A, Attisano L (2000) Association of Smads with lymphoid enhancer binding factor 1/T cell-specific factor mediates cooperative signaling by the transforming growth factor-beta and wnt pathways. Proc Natl Acad Sci USA 97(15):8358–8363. doi:10.1073/pnas.150152697

    Article  PubMed  CAS  Google Scholar 

  • Lavado A, Oliver G (2007) Prox1 expression patterns in the developing and adult murine brain. Dev Dyn 236(2):518–524. doi:10.1002/dvdy.21024

    Article  PubMed  CAS  Google Scholar 

  • Li H, Jin G, Qin J, Yang W, Tian M, Tan X, Zhang X, Shi J, Zou L (2011) Identification of neonatal rat hippocampal radial glia cells in vitro. Neurosci Lett 490(3):209–214. doi:10.1016/j.neulet.2010.12.054

    Article  PubMed  CAS  Google Scholar 

  • Lie DC, Colamarino SA, Song HJ, Desire L, Mira H, Consiglio A, Lein ES, Jessberger S, Lansford H, Dearie AR, Gage FH (2005) Wnt signalling regulates adult hippocampal neurogenesis. Nature 437(7063):1370–1375. doi:10.1038/nature04108

    Article  PubMed  CAS  Google Scholar 

  • Lustig B, Jerchow B, Sachs M, Weiler S, Pietsch T, Karsten U, van de Wetering M, Clevers H, Schlag PM, Birchmeier W, Behrens J (2002) Negative feedback loop of Wnt signaling through upregulation of conductin/axin2 in colorectal and liver tumors. Mol Cell Biol 22(4):1184–1193

    Article  PubMed  CAS  Google Scholar 

  • MacDonald BT, Tamai K, He X (2009) Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell 17(1):9–26. doi:10.1016/j.devcel.2009.06.016

    Article  PubMed  CAS  Google Scholar 

  • Malberg JE, Eisch AJ, Nestler EJ, Duman RS (2000) Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci 20(24):9104–9110

    PubMed  CAS  Google Scholar 

  • Maretto S, Cordenonsi M, Dupont S, Braghetta P, Broccoli V, Hassan AB, Volpin D, Bressan GM, Piccolo S (2003) Mapping Wnt/beta-catenin signaling during mouse development and in colorectal tumors. Proc Natl Acad Sci USA 100(6):3299–3304. doi:10.1073/pnas.0434590100

    Article  PubMed  CAS  Google Scholar 

  • Ming GL, Song H (2005) Adult neurogenesis in the mammalian central nervous system. Annu Rev Neurosci 28:223–250. doi:10.1146/annurev.neuro.28.051804.101459

    Article  PubMed  CAS  Google Scholar 

  • Moriyama A, Kii I, Sunabori T, Kurihara S, Takayama I, Shimazaki M, Tanabe H, Oginuma M, Fukayama M, Matsuzaki Y, Saga Y, Kudo A (2007) GFP transgenic mice reveal active canonical Wnt signal in neonatal brain and in adult liver and spleen. Genesis 45(2):90–100. doi:10.1002/dvg.20268

    Article  PubMed  CAS  Google Scholar 

  • Muroyama Y, Kondoh H, Takada S (2004) Wnt proteins promote neuronal differentiation in neural stem cell culture. Biochem Biophys Res Commun 313(4):915–921

    Article  PubMed  CAS  Google Scholar 

  • Nishimoto M, Fukushima A, Okuda A, Muramatsu M (1999) The gene for the embryonic stem cell coactivator UTF1 carries a regulatory element which selectively interacts with a complex composed of Oct-3/4 and Sox-2. Mol Cell Biol 19(8):5453–5465

    PubMed  CAS  Google Scholar 

  • Nordin N, Li M, Mason JO (2008) Expression profiles of Wnt genes during neural differentiation of mouse embryonic stem cells. Cloning Stem Cells 10(1):37–48. doi:10.1089/clo.2007.0060

    Article  PubMed  CAS  Google Scholar 

  • O’Brien WT, Harper AD, Jove F, Woodgett JR, Maretto S, Piccolo S, Klein PS (2004) Glycogen synthase kinase-3beta haploinsufficiency mimics the behavioral and molecular effects of lithium. J Neurosci 24(30):6791–6798. doi:10.1523/JNEUROSCI.4753-03.2004

    Article  PubMed  Google Scholar 

  • Pittenger C, Duman RS (2008) Stress, depression, and neuroplasticity: a convergence of mechanisms. Neuropsychopharmacology 33(1):88–109. doi:10.1038/sj.npp.1301574

    Article  PubMed  CAS  Google Scholar 

  • Sabo JK, Kilpatrick TJ, Cate HS (2009) Effects of bone morphogenic proteins on neural precursor cells and regulation during central nervous system injury. Neurosignals 17(4):255–264. doi:10.1159/000231892

    Article  PubMed  CAS  Google Scholar 

  • Seki T (2002a) Expression patterns of immature neuronal markers PSA-NCAM, CRMP-4 and NeuroD in the hippocampus of young adult and aged rodents. J Neurosci Res 70(3):327–334. doi:10.1002/jnr.10387

    Article  PubMed  CAS  Google Scholar 

  • Seki T (2002b) Hippocampal adult neurogenesis occurs in a microenvironment provided by PSA-NCAM-expressing immature neurons. J Neurosci Res 69(6):772–783. doi:10.1002/jnr.10366

    Article  PubMed  CAS  Google Scholar 

  • Shimogori T, VanSant J, Paik E, Grove EA (2004) Members of the Wnt, Fz, and Frp gene families expressed in postnatal mouse cerebral cortex. J Comp Neurol 473(4):496–510. doi:10.1002/cne.20135

    Article  PubMed  CAS  Google Scholar 

  • Singh AP, VijayRaghavan K, Rodrigues V (2010) Dendritic refinement of an identified neuron in the Drosophila CNS is regulated by neuronal activity and Wnt signaling. Development 137(8):1351–1360. doi:10.1242/dev.044131

    Article  PubMed  CAS  Google Scholar 

  • Slawny NA, O’Shea KS (2011) Dynamic changes in Wnt signaling are required for neuronal differentiation of mouse embryonic stem cells. Mol Cell Neurosci 48(3):205–216. doi:10.1016/j.mcn.2011.07.010

    Article  PubMed  CAS  Google Scholar 

  • Staal FJ, Meeldijk J, Moerer P, Jay P, van de Weerdt BC, Vainio S, Nolan GP, Clevers H (2001) Wnt signaling is required for thymocyte development and activates Tcf-1 mediated transcription. Eur J Immunol 31(1):285–293. doi:10.1002/1521-4141(200101)31:1<285:AID-IMMU285>3.0.CO;2-D

    Article  PubMed  CAS  Google Scholar 

  • Steiner B, Klempin F, Wang L, Kott M, Kettenmann H, Kempermann G (2006) Type-2 cells as link between glial and neuronal lineage in adult hippocampal neurogenesis. Glia 54(8):805–814. doi:10.1002/glia.20407

    Article  PubMed  Google Scholar 

  • Walker TL, Yasuda T, Adams DJ, Bartlett PF (2007) The doublecortin-expressing population in the developing and adult brain contains multipotential precursors in addition to neuronal-lineage cells. J Neurosci 27(14):3734–3742. doi:10.1523/JNEUROSCI.5060-06.2007

    Article  PubMed  CAS  Google Scholar 

  • Watanabe K, Kamiya D, Nishiyama A, Katayama T, Nozaki S, Kawasaki H, Watanabe Y, Mizuseki K, Sasai Y (2005) Directed differentiation of telencephalic precursors from embryonic stem cells. Nat Neurosci 8(3):288–296. doi:10.1038/nn1402

    Article  PubMed  CAS  Google Scholar 

  • Wexler EM, Paucer A, Kornblum HI, Palmer TD, Geschwind DH (2009) Endogenous Wnt signaling maintains neural progenitor cell potency. Stem Cells 27(5):1130–1141. doi:10.1002/stem.36

    Article  PubMed  CAS  Google Scholar 

  • Woodhead GJ, Mutch CA, Olson EC, Chenn A (2006) Cell-autonomous beta-catenin signaling regulates cortical precursor proliferation. J Neurosci 26(48):12620–12630. doi:10.1523/JNEUROSCI.3180-06.2006

    Article  PubMed  CAS  Google Scholar 

  • Ye W, Mairet-Coello G, DiCicco-Bloom E (2007) DNAse I pre-treatment markedly enhances detection of nuclear cyclin-dependent kinase inhibitor p57Kip2 and BrdU double immunostaining in embryonic rat brain. Histochem Cell Biol 127(2):195–203. doi:10.1007/s00418-006-0238-6

    Article  PubMed  CAS  Google Scholar 

  • Yu X, Malenka RC (2003) Beta-catenin is critical for dendritic morphogenesis. Nat Neurosci 6(11):1169–1177. doi:10.1038/nn1132

    Article  PubMed  CAS  Google Scholar 

  • Zechner D, Fujita Y, Hulsken J, Muller T, Walther I, Taketo MM, Crenshaw EB 3rd, Birchmeier W, Birchmeier C (2003) beta-Catenin signals regulate cell growth and the balance between progenitor cell expansion and differentiation in the nervous system. Dev Biol 258(2):406–418

    Article  PubMed  CAS  Google Scholar 

  • Zhao C, Deng W, Gage FH (2008) Mechanisms and functional implications of adult neurogenesis. Cell 132(4):645–660. doi:10.1016/j.cell.2008.01.033

    Article  PubMed  CAS  Google Scholar 

  • Ziemer LT, Pennica D, Levine AJ (2001) Identification of a mouse homolog of the human BTEB2 transcription factor as a beta-catenin-independent Wnt-1-responsive gene. Mol Cell Biol 21(2):562–574. doi:10.1128/MCB.21.2.562-574.2001

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We’d like to thank the RIKEN Institute for preparation of the ins-TopGal tissue and the laboratories of Drs. Akira Kudo and Yumiko Saga for use of the ins-TopGal mouse line (Moriyama et al. 2007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David S. Garbe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garbe, D.S., Ring, R.H. Investigating Tonic Wnt Signaling Throughout the Adult CNS and in the Hippocampal Neurogenic Niche of BatGal and Ins-TopGal Mice. Cell Mol Neurobiol 32, 1159–1174 (2012). https://doi.org/10.1007/s10571-012-9841-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-012-9841-3

Keywords

Navigation