Skip to main content
Log in

Stimulus-invariant processing and spectrotemporal reverse correlation in primary auditory cortex

Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

The spectrotemporal receptive field (STRF) provides a versatile and integrated, spectral and temporal, functional characterization of single cells in primary auditory cortex (AI). In this paper, we explore the origin of, and relationship between, different ways of measuring and analyzing an STRF. We demonstrate that STRFs measured using a spectrotemporally diverse array of broadband stimuli—such as dynamic ripples, spectrotemporally white noise, and temporally orthogonal ripple combinations (TORCs)—are very similar, confirming earlier findings that the STRF is a robust linear descriptor of the cell. We also present a new deterministic analysis framework that employs the Fourier series to describe the spectrotemporal modulations contained in the stimuli and responses. Additional insights into the STRF measurements, including the nature and interpretation of measurement errors, is presented using the Fourier transform, coupled to singular-value decomposition (SVD), and variability analyses including bootstrap. The results promote the utility of the STRF as a core functional descriptor of neurons in AI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Aertsen A, Johannesma P (1981a) A comparison of the spectro-temporal sensitivity of auditory neurons to tonal and natural stimuli. Biological Cybernetics 42: 145–156.

    Article  CAS  PubMed  Google Scholar 

  • Aertsen A, Johannesma P (1981b) The spectro-temporal receptive field: A functional characteristic of auditory neurons. Biological Cybernetics 42: 133–143.

    Article  CAS  PubMed  Google Scholar 

  • Aertsen A, Johannesma P, Hermes D (1980) Spectro-temporal receptive fields of auditory neurons in the grassfrog. II. Analysis of the stimulus-event relation for tonal stimuli. Biological Cybernetics 38: 235–248.

    Article  Google Scholar 

  • Atlas L, Shamma S (2003) Joint acoustic and modulation frequency. EURASIP Journal of Appllied Signal Processing 2003(7): 668–675.

    Article  Google Scholar 

  • Bair W, Koch C (1996) Temporal precision of spike trains in extrastriate cortex of the behaving macaque monkey. Neural Comput 8: 1185–1202.

    Article  CAS  PubMed  Google Scholar 

  • Berry M, Meister M (1998) Refractoriness and neural precision. Journal of Neuroscience 18(6): 2200–2211.

    CAS  Google Scholar 

  • Boyd S, Tang Y, Chua L (1983) Measuring Volterra kernels. IEEE Transactions on Circuits and Systems 30: 571–577.

    Article  Google Scholar 

  • Carandini M, Heeger D, Senn W (2002) A synaptic explanation of suppression in visual cortex. Journal of Neuroscience 22(22): 10053–10065.

    CAS  PubMed  Google Scholar 

  • Chance F, Nelson S, Abbott L (1998) Synaptic depression and the temporal response characteristics of VI cells. Journal of Neuroscience 18(12): 4785–4799.

    CAS  PubMed  Google Scholar 

  • Chi T, Gao Y, Guyton MC, Ru P, Shamma S (1999) Spectro-temporal modulation transfer functions and speech intelligibility. Journal of the Acoustical Society of America 106(5): 2719–2732.

    Article  CAS  PubMed  Google Scholar 

  • Cohen L (1995) Time-Frequency Analysis. Prentice-Hall.

  • de Boer E, de Jongh H (1978) On cochlear encoding: Potentialities and limitations of the reverse-correlation technique. Journal of the Acoustical Society of America 63: 115–135.

    Article  PubMed  Google Scholar 

  • deCharms R, Blake D, Merzenich M (1998) Optimizing sound features for cortical neurons. Science 280: 1439–1443.

    Article  Google Scholar 

  • Denham S (2001) Cortical synaptic depression and auditory perception. In Greenberg, S Slaney, M eds. Computational Models of Auditory Function, NATO ASI Series, IOS Press, Amsterdam.

    Google Scholar 

  • Depireux DA, Simon JZ, Klein DJ, Shamma SA (2001) Spectro-temporal response field characterization with dynamic ripples in ferret primary auditory cortex. J Neurophysiol 85(3): 1220–1234.

    CAS  PubMed  Google Scholar 

  • Efron B, Tibshirani B (1993) An introduction to the bootstrap, Chapman and Hall, New York.

    Google Scholar 

  • Eggermont J (1993) Wiener and Volterra analyses applied to the auditory system. Hearing Research 66: 177–201.

    Article  CAS  PubMed  Google Scholar 

  • Eggermont J, Aertsen A, Hermes D, Johannesma P (1981) Spectro-temporal characterization of auditory neurons: Redundant or necessary? Hearing Research 5: 109–121.

    Article  CAS  PubMed  Google Scholar 

  • Eggermont J, Aertsen A, Johannesma P (1983a) Prediction of the responses of auditory neurons in the midbrain of the grass frog based on the spectro-temporal receptive field. Hearing Research 10: 191–202.

    Article  CAS  PubMed  Google Scholar 

  • Eggermont J, Johannesma P, Aertsen A (1983b) Reverse-correlation methods in auditory research. Quarterly Review of Biophysics 16: 341–414.

    Article  CAS  Google Scholar 

  • Elhilali M, Klein D, Fritz J, Simon J, Shamma S (2004) The enigma of cortical responses: slow yet precise. In Auditory signal processing, psychoacoustics, and models, (in press), Springer Verlag, New York.

  • Epping W, Eggermont J (1985) Single-unit characteristics in the auditory midbrain of the immobilized grassfrog. Hearing Research 18: 223–243.

    Article  CAS  PubMed  Google Scholar 

  • Escabí MA, Schreiner CE (2002) Nonlinear spectrotemporal sound analysis by neurons in the auditory midbrain. Journal of Neuroscience 22(10): 4114–4131.

    PubMed  Google Scholar 

  • Evans EF (1979) Single-unit studies of mammalian cochlear nerve. In HA Beagley, ed. Auditory investigations: the scientific and technological basis, Vol 68. Clarendon, Oxford, UK, pp 324–367.

    Google Scholar 

  • Hansen P (1998) Rank-deficient and discrete ill-posed problems. SIAM monographs on mathematical modeling, Philadelphia.

  • Heil P (1997) Auditory cortical onset responses revisited. I. First-spike timing. Journal of Neurophys 77: 2616–16641.

    CAS  Google Scholar 

  • Hermes D, Aertsen A, Johannesma P, Eggermont J (1981) Spectro-temporal characteristics of single units in the midbrain of the lightly anaesthetised grass frog (Rana temporaria L.) investigated with noise stimuli. Hearing Research 5: 147–178.

    Article  CAS  PubMed  Google Scholar 

  • Hermmansky H (1999) Mel cepstrum, deltas, double-deltas. What else is new? In Proceedings of Robust Speech Recognition in Adverse Conditions, Tampere, Finland.

  • Johannesma P, Eggermont J (1983) Receptive fields of auditory neurons in the frog’s midbrain as functional elements for acoustic communication. In J Ewert, R Capranica, D Ingle, eds. Advances in Vertebrate Neuroethology, Plenum, New York, pp. 901–910.

    Google Scholar 

  • Keller C, Takahashi T (2000) Representation of temporal features of complex sounds by the discharge patterns of neurons in the owl’s inferior colliculus. Journal of Neurophysiology 84: 2638–2650.

    CAS  Google Scholar 

  • Klein DJ, Depireux DA, Simon JZ, Shamma SA (2000) Robust spectrotemporal reverse correlation for the auditory system: Optimizing stimulus design. Journal of Computational Neuroscience 9(1): 85–111.

    Article  CAS  PubMed  Google Scholar 

  • Klein DJ, König PK, Körding KP (2003) Sparse spectrotemporal coding of sounds. EURASIP Journal of Applied Signal Processing 2003(7): 659–667.

    Article  Google Scholar 

  • Kleinschmidt M (2002) Methods for capturing spectro-temporal modulations in automatic speech recognition. Acustica United With Acta Acustica 88: 416–422.

    Google Scholar 

  • Kleinschmidt M, Gelbart D (2002) Improving word accuracy with Gabor feature extraction. In Proc. Int. Conf. on Spoken Language Processing (ICSLP).

  • Kowalski N, Depireux D, Shamma S (1996a) Analysis of dynamic spectra in ferret primary auditory cortex. I. Characteristics of single-unit responses to moving ripple spectra. Journal of Neurophysiology 76: 3503–3523.

    CAS  PubMed  Google Scholar 

  • Kowalski N, Depireux D, Shamma S (1996b) Analysis of dynamic spectra in ferret primary auditory cortex. II. Prediction of unit responses to arbitrary dynamic spectra. Journal of Neurophysiology 76: 3524–3534.

    CAS  PubMed  Google Scholar 

  • Kvale M, Schreiner C, Bonham B (1998) Spectro-temporal and adaptive response to AM stimuli in the inferior colliculus. Abstracts of the Twenty-first ARO Mid-Winter Meeting.

  • Miller LM, Escabí MA, Read HL, Schreiner CE (2001) Functional convergence of response properties in the auditory thalamocortical system. Neuron 32: 151–160.

    Article  CAS  PubMed  Google Scholar 

  • Miller LM, Escabí MA, Read HL, Schreiner CE (2002) Spectrotemporal receptive fields in the lemniscal auditory thalamus and cortex. Journal of Neurophysiology 87(1): 516–527.

    PubMed  Google Scholar 

  • Moller A (1977) Frequency selectivity of single auditory-nerve fibers in response to broadband noise stimuli. Journal of the Acoustical Society of America 62: 135–142.

    Article  CAS  PubMed  Google Scholar 

  • Nadeu C, Macho D, Hernando J (2001) Time and frequency filtering of filter-bank energies for robust HMM speech recognition. Speech Communication 34(1): 93–114.

    Article  Google Scholar 

  • Oppenheim A, Schafer R (1989) Discrete Time Signal Processing. Prentice Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • Oram M, Wiener M, Lestienne R, Richmond B (1999) Stochastic nature of precisely timed spike patterns in visual system neuronal responses. Journal of Neurophys-iology 81: 3021–3033.

    CAS  Google Scholar 

  • Papoulis A (1962) The Fourier Integral and its Applications. McGraw-Hill.

  • Phillips D, Hall S, Boehnke S (2002) Central auditory onset responses, and temporal asymmetries in auditory perception. Hearing Research 167(1–2): 192–205.

    Article  CAS  PubMed  Google Scholar 

  • Politis D (1998) Computer-intensive methods in statistical analysis. IEEE Signal Processing Magazine 15: 39–54.

    Article  Google Scholar 

  • Rees A, Moller A (1983) Responses of neurons in the inferior colliculus of rats to AM and FM tones. Hearing Research 10: 301–330.

    Article  CAS  PubMed  Google Scholar 

  • Reid R, Victor J, Shapley R (1992) Broadband temporal stimuli decrease the integration time of neurons in cat striate cortex. Vis Neurosci 9: 39–45.

    Article  CAS  PubMed  Google Scholar 

  • Rutkowski RG, Shackleton TM, Schnupp JWH, Wallace MN, Palmer AR (2002) Spectrotemporal receptive field properties of single units in the primary, dorsocaudal and ventrorostral auditory cortex of the guinea pig. Audiology and NeuroOtology 7(4): 214–227.

    Article  PubMed  Google Scholar 

  • Schafer M, Rubsamen R, Dorrscheidt G, Knipschild M (1992) Setting complex tasks to single units in the avian forebrain. II: Do we really need natural stimuli to describe neuronal response characteristics? Hearing Research 57: 231–244.

    Article  CAS  PubMed  Google Scholar 

  • Schetzen M (1980) The Volterra and Wiener theories of nonlinear systems, Wiley Sons, New York.

    Google Scholar 

  • Schreiner C, Calhoun B (1995) Spectral envelope coding in cat primary auditory cortex: Properties of ripple transfer functions. Journal of Auditory Neuroscience 1: 39–61.

    Google Scholar 

  • Sen K, Theunissen F, Doupe A (2001) Feature analysis of natural sounds in the songbird auditory forebrain. Journal of Neurophysiology 86: 1445–1458.

    CAS  PubMed  Google Scholar 

  • Shadlen M, Newsome W (1998) The variable discharge of cortical neurons: Implications for connectivity, computation, and information coding. Journal of Neuroscience 18: 3870–3896.

    CAS  PubMed  Google Scholar 

  • Shamma S, Fleshman JW, Wiser PR, Versnel H (1993) Organization of response areas in ferret primary auditory cortex. Journal of Neurophysiology 69: 367–383.

    CAS  PubMed  Google Scholar 

  • Shamma S, Versnel H, Kowalski N (1995) Ripple analysis in the ferret primary auditory cortex. I. Response characteristics of single units to sinusoidally rippled spectra. Journal of Auditory Neuroscience 1: 233–254.

    Google Scholar 

  • Simon J, Depireux D, Klein D, Shamma S (subm) Temporal symmetry in primary auditory cortex: Implications for cortical connectivity. Journal of Neuroscience.

  • Smolders J, Aertsen A, Johannesma P (1979) Neural representation of the acoustic biotope. Biological Cybernetics 35: 11–20.

    Article  CAS  PubMed  Google Scholar 

  • Spekreijse H, Oosting H (1970) Linearizing: A method for analysing and synthesizing nonlinear systems. Kybernetik 7: 22–31.

    Article  CAS  PubMed  Google Scholar 

  • Stewart G (1991) Purturbation theory for the singular value decomposition. In R Vaccaro, ed., SVD and Signal Processing II, Elsevier Science Publisher, pp. 99–109.

  • Stewart G (1993) Determining rank in the presence of error. In MS Moonen, GH Golub, BLR DeMoor, eds. Linear Algebra for Large Scale and Real-Time Applications, Kluwer Academic Publishers, Dordrecht, pp. 275–292.

    Google Scholar 

  • Sutter E (1992) A deterministic approach to nonlinear systems analysis. In R Pinter, B Nabet, eds., Nonlinear Vision: Determination of Neural Receptive Fields, Function, and Networks, CRC Press, Boca Raton, FL, pp. 171–220.

    Google Scholar 

  • Swerup C (1978) On the choice of noise for the analysis of the peripheral auditory system. Biological Cybernetics 29: 97–104.

    Article  CAS  PubMed  Google Scholar 

  • Theunissen F, Sen K, Doupe A (2000) Spectral-temporal receptive fields of nonlinear auditory neurons obtained using natural sounds. Journal of Neuroscience 20: 2315–2331.

    CAS  PubMed  Google Scholar 

  • Valois RD, Valois KD (1990) Spatial Vision, Oxford University Press, New York.

    Google Scholar 

  • Versnel H, Zwiers M, van Opstal A (2002) Spectro-temporal response fields in the inferior colliculus of awake monkey. Journal Revista de Acustica 33: 84-87985-06-8.

    Google Scholar 

  • Victor J, Knight B (1979) Nonlinear analysis with an arbitrary stimulus ensemble. Quarterly of Applied Mathematics 37: 113–136.

    Google Scholar 

  • Victor J, Shapley R (1980) A method of nonlinear analysis in the frequency domain. Biophysical Journal 29: 459–484.

    Article  CAS  PubMed  Google Scholar 

  • Wickesberg R, Geisler C (1984) Artifacts in Wiener kernels estimated using Gaussian white noise. IEEE Transactions on Biomedical Engineering 31(6): 454–461.

    Article  CAS  PubMed  Google Scholar 

  • Yeshurun Y, Wollberg Z, Dyn N (1987) Identification of MGB cells by Volterra kernels. II. Towards a functional classification of cells. Biological Cybernetics 56: 203–208.

    Article  Google Scholar 

  • Young E (1998) What’s the best sound? Science 280: 1402–1403.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Klein.

Additional information

Action Editor: Mathew Wiener

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klein, D.J., Simon, J.Z., Depireux, D.A. et al. Stimulus-invariant processing and spectrotemporal reverse correlation in primary auditory cortex. J Comput Neurosci 20, 111–136 (2006). https://doi.org/10.1007/s10827-005-3589-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-005-3589-4

Keywords

Navigation