Skip to main content
Log in

Contributions of I h to feature selectivity in layer II stellate cells of the entorhinal cortex

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Stellate cells (SCs) of the entorhinal cortex generate prominent subthreshold oscillations that are believed to be important contributors to the hippocampal theta rhythm. The slow inward rectifier I h is expressed prominently in SCs and has been suggested to be a dominant factor in their integrative properties. We studied the input-output relationships in stellate cells (SCs) of the entorhinal cortex, both in control conditions and in the presence of the I h antagonist ZD7288. Our results show that I h is responsible for SCs’ subthreshold resonance, and contributes to enhanced spiking reliability to theta-rich stimuli. However, SCs still exhibit other traits of rhythmicity, such as subthreshold oscillations, under I h blockade. To clarify the effects of I h on SC spiking, we used a generalized form of principal component analysis to show that SCs select particular features with relevant temporal signatures from stimuli. The spike-selected mix of those features varies with the frequency content of the stimulus, emphasizing the inherent nonlinearity of SC responses. A number of controls confirmed that this selectivity represents a stimulus-induced change in the cellular input-output relationship rather than an artifact of the analysis technique. Sensitivity to slow features remained statistically significant in ZD7288. However, with I h blocked, slow stimulus features were less predictive of spikes and spikes conveyed less information about the stimulus over long time scales. Together, these results suggest that I h is an important contributor to the input-output relationships expressed by SCs, but that other factors in SCs also contribute to subthreshold oscillations and nonlinear selectivity to slow features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Acker CD, Kopell N, White JA (2003) Synchronization of strongly coupled excitatory neurons: Relating network behavior to biophysics. J. Comput. Neurosci. 15: 71–90.

    Article  PubMed  Google Scholar 

  • Adachi T, Robinson DM, Miles GB, Funk GD (2005) Noradrenergic modulation of xii motoneuron inspiratory activity does not involve alpha2-receptor inhibition of the ih current or presynaptic glutamate release. J. Appl. Physiol. 98: 1297–1308.

    Article  PubMed  CAS  Google Scholar 

  • Adelman TL, Bialek W, Olberg RM (2003) The information content of receptive fields. Neuron 40: 823–833.

    Article  PubMed  CAS  Google Scholar 

  • Aguera Y Arcas B, Fairhall AL (2003) What causes a neuron to spike? Neural. Comput. 15: 1789–1807.

    Article  Google Scholar 

  • Alonso A, Llinás RR (1989) Subthreshold na+-dependent theta-like rhythmicity in stellate cells of entorhinal cortex layer ii. Nature 342: 175–177.

    Article  PubMed  CAS  Google Scholar 

  • Alonso A, Klink R (1993) Differential electroresponsiveness of stellate and pyramidal-like cells of medial entorhinal cortex layer ii. J. Neurophysiol. 70: 128–143.

    PubMed  CAS  Google Scholar 

  • Brenner N, Strong SP, Koberle R, Bialek W, de Ruyter van Steveninck RR (2000) Synergy in a neural code. Neural. Comput. 12: 1531–1552.

    Article  PubMed  CAS  Google Scholar 

  • Buzsáki G (2002) Theta oscillations in the hippocampus. Neuron 33: 325–340.

    Article  PubMed  Google Scholar 

  • Caplan JB, Madsen JR, Schulze-Bonhage A, Aschenbrenner-Scheibe R, Newman EL, Kahana MJ (2003) Human {theta} oscillations related to sensorimotor integration and spatial learning. J. Neurosci. 23: 4726–4736.

    PubMed  CAS  Google Scholar 

  • Chevaleyre V, Castillo PE (2002) Assessing the role of ih channels in synaptic transmission and mossy fiber ltp. Proc. Natl. Acad. Sci. USA 99: 9538–9543.

    Article  PubMed  CAS  Google Scholar 

  • Clague H, Theunissen F, Miller JP (1997) Effects of adaptation on neural coding by primary sensory interneurons in the cricket cercal system. J. Neurophysiol. 77: 207–220.

    Article  PubMed  CAS  Google Scholar 

  • Dayan P, Abbott LF (2001) Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems, Edition. Massachusetts Institute of Technology Press, Cambridge, Mass.

    Google Scholar 

  • Dickson CT, Magistretti J, Shalinsky MH, Fransen E, Hasselmo ME, Alonso A (2000) Properties and role of i(h) in the pacing of subthreshold oscillations in entorhinal cortex layer ii neurons. J. Neurophysiol. 83: 2562–2579.

    PubMed  CAS  Google Scholar 

  • Fairhall AL, Lewen GD, Bialek W, de Ruyter Van Steveninck RR (2001) Efficiency and ambiguity in an adaptive neural code. Nature 412: 787–792.

    Article  PubMed  CAS  Google Scholar 

  • Fellous JM, Houweling AR, Modi RH, Rao RP, Tiesinga PH, Sejnowski TJ (2001) Frequency dependence of spike timing reliability in cortical pyramidal cells and interneurons. J. Neurophysiol. 85: 1782–1787.

    PubMed  CAS  Google Scholar 

  • Fries P, Roelfsema PR, Engel AK, Konig P, Singer W (1997) Synchronization of oscillatory responses in visual cortex correlates with perception in interocular rivalry. Proc. Natl. Acad. Sci. USA 94: 12699–12704.

    Article  PubMed  CAS  Google Scholar 

  • Gray CM, Konig P, Engel AK, Singer W (1989) Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338: 334–337.

    Article  PubMed  CAS  Google Scholar 

  • Haas JS, White JA (2002) Frequency selectivity of layer ii stellate cells in the medial entorhinal cortex. J. Neurophysiol. 88: 2422–2429.

    Article  PubMed  Google Scholar 

  • Hasselmo ME, Bodelon C, Wyble BP (2002) A proposed function for hippocampal theta rhythm: Separate phases of encoding and retrieval enhance reversal of prior learning. Neural. Comput. 14: 793–817.

    Article  PubMed  Google Scholar 

  • Hu H, Vervaeke K, Storm JF (2002) Two forms of electrical resonance at theta frequencies, generated by m-current, h-current and persistent na+ current in rat hippocampal pyramidal cells. J. Physiol. 545: 783–805.

    Article  PubMed  CAS  Google Scholar 

  • Hunter JD, Milton JG (2003) Amplitude and frequency dependence of spike timing: Implications for dynamic regulation. J. Neurophysiol. 90: 387–394.

    Article  PubMed  Google Scholar 

  • Hunter JD, Milton JG, Thomas PJ, Cowan JD (1998) Resonance effect for neural spike time reliability. J. Neurophysiol. 80: 1427–1438.

    PubMed  CAS  Google Scholar 

  • Hutcheon B, Yarom Y (2000) Resonance, oscillation and the intrinsic frequency preferences of neurons. Trends Neurosci 23:216–222.

    Article  PubMed  CAS  Google Scholar 

  • Jensen RV (1998) Synchronization of randomly driven nonlinear oscillators. Physiol. Rev. E 58: 6907–6910.

    Article  Google Scholar 

  • Klink R, Alonso A (1993) Ionic mechanisms for the subthreshold oscillations and differential electroresponsiveness of medial entorhinal cortex layer ii neurons. J. Neurophysiol. 70: 144–157.

    PubMed  CAS  Google Scholar 

  • Mainen ZF, Sejnowski TJ (1995) Reliability of spike timing in neocortical neurons. Science 268: 1503–1506.

    Article  PubMed  CAS  Google Scholar 

  • Niebur E, Hsiao SS, Johnson KO (2002) Synchrony: A neuronal mechanism for attentional selection? Curr. Opin. Neurobiol. 12: 190–194.

    Article  PubMed  CAS  Google Scholar 

  • O’Keefe J, Recce ML (1993) Phase relationship between hippocampal place units and the eeg theta rhythm. Hippocampus 3: 317–330.

    Article  PubMed  CAS  Google Scholar 

  • Raghavachari S, Kahana MJ, Rizzuto DS, Caplan JB, Kirschen MP, Bourgeois B, Madsen JR, Lisman JE (2001) Gating of human theta oscillations by a working memory task. J. Neurosci. 21: 3175–3183.

    PubMed  CAS  Google Scholar 

  • Richardson MJ, Brunel N, Hakim V (2003) From subthreshold to firing-rate resonance. J. Neurophysiol. 89: 2538–2554.

    Article  PubMed  Google Scholar 

  • Roelfsema PR, Engel AK, Konig P, Singer W (1997) Visuomotor integration is associated with zero time-lag synchronization among cortical areas. Nature 385: 157–161.

    Article  PubMed  CAS  Google Scholar 

  • Schreiber S, Erchova I, Heinemann U, Herz AV (2004) Subthreshold resonance explains the frequency-dependent integration of periodic as well as random stimuli in the entorhinal cortex. J. Neurophysiol. 92: 408–415.

    Article  PubMed  Google Scholar 

  • Schreiber S, Fellous J-M, Tiesinga P, Sejnowski TJ (2004) Influence of ionic conductances on spike timing reliability of cortical neurons for suprathreshold rhythmic inputs. J. Neurophysiol. 91: 194–205.

    Article  PubMed  Google Scholar 

  • Shannon CE (1948) A mathematical theory of communication. Bell Syst. Tech. J. 27: 379–423; 623–656.

    Google Scholar 

  • Singer W (1999) Neurobiology. Striving for coherence [news; comment]. Nature 397: 391–393.

    Article  PubMed  CAS  Google Scholar 

  • Winson J (1978) Loss of hippocampal theta rhythm results in spatial memory deficit in the rat. Science 201: 160–163.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We owe thanks to the faculty and organizers of the Methods in Computational Neuroscience course at the Marine Biological Lab (Woods Hole, MA, USA), where this project was started. We are particularly grateful to William Bialek, former co-Director of MCN, who provided substantial guidance in use of GPCA and information theoretic methods. We thank Kamal Sen and Jon Shlens for helpful discussions, and Kyle Lillis for reading a preliminary version of the manuscript. This work was supported by grants from the National Institutes of Health (R01 MH61604, R01 NS34425) to J.A. White.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John A. White.

Additional information

Action Editor: Xiao-Jing Wang

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haas, J.S., Dorval II, A.D. & White, J.A. Contributions of I h to feature selectivity in layer II stellate cells of the entorhinal cortex. J Comput Neurosci 22, 161–171 (2007). https://doi.org/10.1007/s10827-006-0005-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-006-0005-7

Keywords

Navigation